Refine search
Results 1-6 of 6
Cryptosporidium: Detection in water and food Full text
2010
Smith, H. V. (Huw V) | Nichols, Rosely A.B.
Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.
Show more [+] Less [-]Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections
2002
Threlfall, E.J.
Strains of Salmonella spp. with resistance to antimicrobial drugs are now widespread in both developed and developing countries. In developed countries it is now increasingly accepted that for the most part such strains are zoonotic in origin and acquire their resistance in the food-animal host before onward transmission to humans through the food chain. Of particular importance since the early 1990s has been a multiresistant strain of Salmonella typhimurium definitive phage type (DT) 104, displaying resistance to up to six commonly used antimicrobials, with about 15% of isolates also exhibiting decreased susceptibility to ciprofloxacin. Mutations in the gyrA gene in such isolates have been characterised by a PCR LightCycler-based gyrA mutation assay, and at least four different mutations have been identified. Multiple resistance (to four or more antimicrobials) is also common in the poultry-associated pathogens Salmonella virchow and Salmonella hadar, with an increasing number of strains of these serotypes exhibiting decreased susceptibility to ciprofloxacin. Multiple resistance is also being found in other serotypes in several other European countries, and has been associated with treatment failures. For Salmonella typhi, multiple drug resistance is now the norm in strains originating in the Indian subcontinent and south-east Asia. Such multiresistant strains have been responsible for several epidemics and some of these have been associated with contaminated water supplies. Furthermore, an increasing number of multiresistant strains of S. typhi are now exhibiting decreased susceptibility to ciprofloxacin, with concomitant treatment failures. In developed countries antimicrobial resistance in zoonotic salmonellas has been attributed to the injudicious use of antimicrobials in food-producing animals. It is hoped that the application of Codes of Practice for the use of such agents, which have been prepared by the pharmaceutical industry in response to widespread international concern about the development of drug resistance in bacterial pathogens, will now result in a widespread reduction in the incidence of drug-resistant salmonellas in food production animals and humans on an international scale.
Show more [+] Less [-]Salmonella survival and differential expression of fatty acid biosynthesis‐associated genes in a low‐water‐activity food Full text
2014
Chen, W. | Golden, D.A. | Critzer, F.J.
The purpose of this study was to investigate the difference in expression of fatty acid biosynthesis genes and survival of different serotypes of Salmonella when incubated in a low‐water‐activity (aw) food over a 14‐day period. Stationary cells of five strains of Salmonella enterica belonging to 3 different serovars (Typhimurium ATCC 2486, Enteritidis H4267, Tennessee ARI‐33, Tennessee S13952 and Tennessee K4643) were inoculated into granular sugar (aW = 0·50) and held aerobically over a 14‐day period at 25°C. Survival was determined by enumerating colonies on TSA and XLT‐4 plates at 0, 1, 3, 5, 7 and 14 days. Correspondingly, gene expression was evaluated for three selected genes involved in fatty acid biosynthesis and modification (fabA, fabD and cfa). After 14 days of incubation, the population was reduced from 2·29 to 3·36 log for all five strains. Salmonella Tennessee ARI‐33 and Salm. Tennessee K4643 displayed greater survival than Salm. Typhimurium and Salm. Enteritidis. The increased expression of the cfa gene (involved in cyclopropane fatty acid biosynthesis) over 14 days was found associated with strains with a lower survival rate. The fabA gene (involved in unsaturated fatty acid biosynthesis) was observed up‐regulated for all strains for at least one sampling time and for Salm. Tennessee ARI‐33 for all time points tested, suggesting its potential role in enhancing Salmonella survival in low awfoods. SIGNIFICANCE AND IMPACT OF THE STUDY: Numerous outbreaks of salmonellosis associated with low‐water‐activity foods have been reported. Therefore, the adaptive mechanisms utilized by Salmonella to survive in low‐water‐activity foods for prolonged periods of time need to be better understood. The results in this study showed that low‐water‐activity environments increase expression of gene fabA, which is involved in unsaturated fatty acid biosynthesis of Salmonella, while the increased expression of cfa, associated with cyclopropane fatty acid synthesis, was associated with decreased survival over 14 days.
Show more [+] Less [-]Detection of low numbers of Salmonella in environmental water, sewage and food samples by a nested polymerase chain reaction assay Full text
1999
Waage, A.S. | Vardund, T. | Lund, V. | Kapperud, G.
A polymerase chain reaction (PCR) assay with two nested pairs of primers selected from conserved sequences within a 2.3 kb randomly cloned DNA fragment from the Salmonella typhimurium chromosome was developed. The nested PCR assay correctly identified 128 of a total of 129 Salmonella strains belonging to subspecies I, II, IIIb and IV. One strain of Salm. arizona (ssp. IIIa) tested negative. No PCR products were obtained from any of the 31 non-Salmonella strains examined. The sensitivity of the assay was 2 cfu, as determined by analysis of proteinase K-treated boiled lysates of Salm. typhimurium. The performance of the assay was evaluated for environmental water, sewage and food samples spiked with Salm. typhimurium. Water and sewage samples were filtered and filters were enriched overnight in a non-selective medium. Prior to PCR, the broth cultures were subjected to a rapid and simple preparation procedure consisting of centrifugation, proteinase K treatment and boiling. This assay enabled detection of 10 cfu 100 ml(-1) water with background levels of up to 8700 heterotrophic organisms ml(-1) and 10000 cfu of coliform organisms 100 ml(-1) water. Spiked food samples were analysed with and without overnight enrichment in a non-selective medium using the same assay as above. Nested PCR performed on enriched broths enabled detection of < 10 cfu g(-1) food. Variable results were obtained for food samples examined without prior enrichment and most results were negative. This rapid and simple assay provides a sensitive and specific means of screening drinking water or environmental water samples, as well as food samples, for the presence of Salmonella spp.
Show more [+] Less [-]Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste Full text
2013
Lim, J.W. | Chen, C. L. | Ho, I.J.R. | Wang, J.-Y.
The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance.
Show more [+] Less [-]Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci Full text
2011
Mathew, Lolita G. | Campbell, Ewan M. | Yool, Andrea J. | Fabrick, Jeffrey A.
Some hemipteran xylem and phloem-feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber is likely facilitated by an aquaporin protein. B. tabaci aquaporin-1 (BtAQP1) possesses characteristic aquaporin topology and conserved pore-forming residues found in water-specific aquaporins. As predicted for an integral transmembrane protein, recombinant BtAQP1 expressed in cultured insect cells localized within the plasma membrane. BtAQP1 is primarily expressed in early instar nymphs and adults, where in adults it is localized in the filter chamber and hindgut. Xenopus oocytes expressing BtAQP1 were water permeable and mercury-sensitive, both characteristics of classical water-specific aquaporins. These data support the hypothesis that BtAQP1 is a water transport protein within the specialized filter chamber of the alimentary tract and functions to translocate water across tissues for maintenance of osmotic pressure and/or excretion of excess dietary fluid.
Show more [+] Less [-]