Refine search
Results 1-2 of 2
Interlinkage between water-energy-food for oil palm cultivation in Thailand Full text
2020
Jaroenkietkajorn, Ukrit | Gheewala, Shabbir H.
Biofuels for use in on-road transportation have been promoted in Thailand over the past decade to reduce dependence on imported fossil resources as well as possibly reducing greenhouse gas emissions. This has led to an increase in production of biodiesel which is produced from palm oil. However, as palm oil is also used for food, it is important to take this into consideration as well. Also, oil palm cultivation is rather water-intensive. Hence, it is necessary to analyze the interlinkage between water, food, and energy to have a holistic understanding and prevent trade-offs when addressing one issue in isolation. The water-energy-food nexus for oil palm cultivation in Thailand has been conducted following two widely used methods, the Water-Food-Energy Nexus (WFEN) and Water-Energy-Food (WEF) nexus assessment method. The results are demonstrated as a single score, which is easier for suggesting a suitable area for oil palm plantation. The assessment indicates the southern region of Thailand is the most suitable for oil palm plantation. The recommendation is consistent with the suggestion of the government, based on land and climate suitability. However, this study considers more comprehensive aspects including various other environmental aspects. Oil palm cultivation mainly relates to the amount of freshwater consumption, leading to the increment of fuel consumption for pumping water. On the other hand, the effectiveness of fresh fruit bunch yield (for food and energy production) should be developed in the future. Besides, the results recommend the central region for the expansion of oil palm cultivation in the future because of the availability of a good irrigation infrastructure.
Show more [+] Less [-]Environmental sustainability issues in the food–energy–water nexus: Breakfast cereals and snacks Full text
2015
Jeswani, Harish Kumar | Burkinshaw, Richard | Azapagic, Adisa
Understanding environmental impacts of complete food supply chains is important for the food industry to help devise strategies for reducing the impacts of current and future products. Breakfast cereals are one of the most important foods consumed in many countries, but their environmental impacts are currently unknown. Therefore, this study explores the environmental sustainability issues in the food–energy–water nexus by considering breakfast cereals manufactured by one of the world’s largest producers, Kellogg Europe. A life cycle assessment has been carried out for these purposes with the aim of helping the Company to integrate environmental sustainability considerations into the design of their products and packaging. The results indicate that the average global warming potential (GWP) of Kellogg’s breakfast cereals is 2.64 kg CO2 eq. per kg of product. The main GWP hotspots are the ingredients (48%) and energy used in the manufacturing process (23%); packaging and transport contribute 15% each. Rice is the single largest contributor to the GWP of the ingredients (38%). The manufacturing stage is the main contributor of primary energy demand (34%), while the ingredients are responsible for more than 90% of the water footprint. The ingredients are also the main contributors to most other environmental impacts, including land use (97%), depletion of elements (61%), eutrophication (71%), human toxicity (54%) and photochemical smog (50%). The impacts from packaging are high for freshwater and marine toxicity. The contribution of transport is significant for depletion of elements and fossil resources (23%), acidification (32%), ozone depletion (28%) and photochemical smog (24%). Improvement opportunities explored in the paper include better agricultural practices, recipe modifications, improved energy efficiency of manufacturing processes and use of alternative packaging. Impacts from consumption are also discussed.
Show more [+] Less [-]