Refine search
Results 1-3 of 3
A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample Full text
2016
Wei, Tai-Bao | Li, Wen-Ting | Li, Qiao | Su, Jun-Xia | Qu, Wen-Juan | Lin, Qi | Yao, Hong | Zhang, You-Ming
A turn-on fluorescent chemosensor (H-1) for cyanide anions based on dihydroxy phenazine was designed and synthesised. The sensor H-1 exhibits high sensitivity and good selectivity for cyanide in pure water. The CN− response mechanism involves a hydrogen bonding and deprotonation process in the sensor, which induced prominent fluorescence enhancement. The detection limit of the sensor toward CN− is 5.65×10−7M, and other anions had nearly no influence on the probing behavior. In addition, test strips based on the sensor were fabricated, which also exhibit a good selectivity to CN− in water. Notably, this sensor was successfully applied to detect CN− in food samples, which proves a very simple and selective platform for on-site monitoring of CN− in agriculture samples.
Show more [+] Less [-]Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree Full text
2014
Price, Paul | Zaleski, Rosemary | Hollnagel, Heli | Ketelslegers, Hans | Han, Xianglu
Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture’s toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.
Show more [+] Less [-]Nitrogen and phosphorus forms in water and the food requirements of algae. [Translation from: Wiadomosci Ekologiczne 19 238-244, 1973. ] Full text
1974
Spodniewska, I.
When dissolved in water, compounds of nitrogen and phosphorus ought to contain the basic assimilated food requirements for autotrophic plants and therefore autotrophic algae. This article summarises the occurrence of nitrogen in water, how species of algae utilize nitrogen and phosphorus forms for growth and the capacities of algae to adapt to environments of different nutrient wealth. This topic has unquestionable importance not only for the purpose of survival of a species but also in deciding indirectly about the stability of ecosystems. | Translated from Polish into English
Show more [+] Less [-]