Refine search
Results 81-90 of 270
The water-energy-food nexus: climate risks and opportunities in southern Africa Full text
2018
Nhamo, Luxon | Ndlela, B. | Nhemachena, Charles | Mabhaudhi, T. | Mpandeli, S. | Matchaya, Greenwell C.
The discourse on the need for water, energy, and food security has dominated the development agenda of southern African countries, centred on improving livelihoods, building resilience, and regional integration. About 60% of the population in the Southern African Development Community (SADC) live in rural areas relying mainly on rainfed agriculture, lacking access to clean water and energy, yet the region is endowed with vast natural resources. The water-energy-food (WEF) nexus is a conceptual framework that presents opportunities for greater resource coordination, management, and policy convergence across sectors. This is particularly relevant in the SADC region as resources are transboundary and supports efforts linked to regional integration and inclusive socio-economic development and security. We conducted an appraisal of WEF-related policies and institutions in SADC and identified linkages among them. The present ‘silo’ approach in resource management and allocation, often conducted at the national level, contributes to the region’s failure to meet its development targets, exacerbating its vulnerabilities. The lack of coordination of WEF nexus synergies and trade-offs in planning often threatens the sustainability of development initiatives. We highlighted the importance of the WEF nexus to sustainably address the sectoral coordination of resources through harmonised institutions and policies, as well as setting targets and indicators to direct and monitor nexus developments. We illustrate the significance of the nexus in promoting inclusive development and transforming vulnerable communities into resilient societies. The study recommends a set of integrated assessment models to monitor and evaluate the implementation of WEF nexus targets. Going forward, we propose the adoption of a regional WEF nexus framework.
Show more [+] Less [-]Water-Energy-Food Nexus | A Platform for Implementing the Sustainable Development Goals Full text
2018
Stephan, Raya | Mohtar, Rabi H. | Daher, Bassel | Embid, Antonio | Hillers, Astrid | Ganter, Carl | Karlberg, Louise | Martin, Liber | Nairiz, Saeed | Rodriguez, Diego J. | Sarni, Will
This article was developed as an outcome of the “Water-Energy-Food Nexus” High Level Panel (HLP) which took place at the XVI World Water Congress, Cancun Mexico, June 1, 2017. The HLP’s goal was to demonstrate the extent of interconnection between the water, energy, and food Sustainable Development Goals (SDGs) of the United Nations. The HLP highlighted lessons learned from various thematic and regional case studies and experiences. The panel focused on exploring the possible trade-offs among possible pathways for implementation of the SDGs, and on identifying holistic assessment criteria for accounting for potential competition of multiple implementation plans at different scales. This focus led to substantial discussion about ways to improve policy coherence through improved communication between policy and science across both sectors and scales.
Show more [+] Less [-]Climate change adaptation through the water-energy-food nexus in southern Africa Full text
2018
Mpandeli, S. | Naidoo, D. | Mabhaudhi, Tafadzwanashe | Nhemachena, Charles | Nhamo, Luxon | Liphadzi, S. | Hlahla, S. | Modi, Albert Thembinkosi
Climate change is a complex and cross-cutting problem that needs an integrated and transformative systems approach to respond to the challenge. Current sectoral approaches to climate change adaptation initiatives often create imbalances and retard sustainable development. Regional and international literature on climate change adaptation opportunities and challenges applicable to southern Africa from a water-energy-food (WEF) nexus perspective was reviewed. Specifically, this review highlights climate change impacts on water, energy, and food resources in southern Africa, while exploring mitigation and adaptation opportunities. The review further recommends strategies to develop cross-sectoral sustainable measures aimed at building resilient communities. Regional WEF nexus related institutions and legal frameworks were also reviewed to relate the WEF nexus to policy. Southern Africa is witnessing an increased frequency and intensity in climate change-associated extreme weather events, causing water, food, and energy insecurity. A projected reduction of 20% in annual rainfall by 2080 in southern Africa will only increase the regional socio-economic challenges. This is exacerbating regional resource scarcities and vulnerabilities. It will also have direct and indirect impacts on nutrition, human well-being, and health. Reduced agricultural production, lack of access to clean water, sanitation, and clean, sustainable energy are the major areas of concern. The region is already experiencing an upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). What is clear is that climate change impacts are cross-sectoral and multidimensional, and therefore require cross-sectoral mitigation and adaptation approaches. In this regard, a wellcoordinated and integrated WEF nexus approach offers opportunities to build resilient systems, harmonise interventions, and mitigate trade-offs and hence improve sustainability. This would be achieved through greater resource mobilisation and coordination, policy convergence across sectors, and targeting nexus points in the landscape. The WEF nexus approach has potential to increase the resilience of marginalised communities in southern Africa by contributing towards attaining the Sustainable Development Goals (SDGs 1, 2, 3, 6, 7, and 13).
Show more [+] Less [-]Global Economic and Food Security Impacts of Demand-Driven Water Scarcity—Alternative Water Management Options for a Thirsty World Full text
2018
Nechifor, Victor | Winning, Matthew
Global freshwater demand will likely continue its expansion under current expectations of economic and population growth. Withdrawals in regions which are already water-scarce will impose further pressure on the renewable water resource base threatening the long-term availability of freshwater across the many economic activities dependent on this resource for various functions. This paper assesses the economy-wide implications of demand-driven water scarcity under a ‘middle-of-the-road’ socio-economic development pathway by considering the trade-offs between the macroeconomic and food security impacts. The study employs a global CGE model comprising an advanced level of detail regarding water uses across economic activities and which allows for a sector-specific endogenous adaptation to water scarcity. A sustainable withdrawal threshold is imposed in regions with extended river-basin overexploitation (India, South Asia, the Middle East, and Northern Africa) whilst different water management options are considered through four alternative allocation methods across users. The scale of macroeconomic effects is dependent on the relative size of sectors with low-water productivity, the amount of water uses in these sectors, and the flexibility of important water users to substitute away from water inputs in conditions of scarcity. The largest negative GDP deviations are obtained in scenarios with limited mobility to re-allocate water across users. A significant alleviation is obtained when demand patterns are shifted based on differences in water productivity, however, with a significant imposition on food security prospects.
Show more [+] Less [-]Global Economic and Food Security Impacts of Demand-Driven Water Scarcity—Alternative Water Management Options for a Thirsty World Full text
2018
Victor Nechifor | Matthew Winning
Global freshwater demand will likely continue its expansion under current expectations of economic and population growth. Withdrawals in regions which are already water-scarce will impose further pressure on the renewable water resource base threatening the long-term availability of freshwater across the many economic activities dependent on this resource for various functions. This paper assesses the economy-wide implications of demand-driven water scarcity under a ‘middle-of-the-road’ socio-economic development pathway by considering the trade-offs between the macroeconomic and food security impacts. The study employs a global CGE model comprising an advanced level of detail regarding water uses across economic activities and which allows for a sector-specific endogenous adaptation to water scarcity. A sustainable withdrawal threshold is imposed in regions with extended river-basin overexploitation (India, South Asia, the Middle East, and Northern Africa) whilst different water management options are considered through four alternative allocation methods across users. The scale of macroeconomic effects is dependent on the relative size of sectors with low-water productivity, the amount of water uses in these sectors, and the flexibility of important water users to substitute away from water inputs in conditions of scarcity. The largest negative GDP deviations are obtained in scenarios with limited mobility to re-allocate water across users. A significant alleviation is obtained when demand patterns are shifted based on differences in water productivity, however, with a significant imposition on food security prospects.
Show more [+] Less [-]Determining strategies for water, energy, and food-related sectors in local economic development Full text
2018
Purwanto, Aries | Sušnik, Janez | Suryadi, F.X. | Du Fraiture, Charlotte
Water, energy, and food (WEF) related sectors are important to support people’s life in a region. Resource evaluation is one of the stages in resource management to ensure that the existence of those sectors is provided sustainably. The assessment of the agglomeration level and growth of each sector in economic development can give better insights for local stakeholders either government bodies or private firms to improve sustainable management of these sectors. The objectives of this paper are to portray the agglomeration level and recent growth of WEF related sectors in local regions in Indonesia, and to determine possible sustainable development strategies. The location quotient (LQ) and competitive position (CP) analysis methods are employed in this regard. By analysing Gross Regional Domestic Product (GRDP) between 2000 and 2015, basic and non-basic sectors have been determined. Results show that the general characteristics of WEF related sectors in this region can be distinguished clearly based on its main economic development focus. Results show recent growth in WEF sectors locally, from which possible strategies for future sustainable development are formulated that could be considered in the evaluation and planning process. This approach can be expected to assist local government and stakeholders in undertaking preliminary evaluation, in particular the availability of WEF resources, ensuring that development meets local and national sustainable development targets.
Show more [+] Less [-]Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling Full text
2018
Gao, Junlian | Xu, Xiangyang | Cao, Guiying | Ermoliev, Yurii M. | Ermolieva, Tatiana Y. | Rovenskaya, Elena A.
Across the world, human activity is approaching planetary boundaries. In northwest China, in particular, the coal industry and agriculture are competing for key limited inputs of land and water. In this situation, the traditional approach to planning the development of each sector independently fails to deliver sustainable solutions, as solutions made in sectorial ‘silos’ are often suboptimal for the entire economy. We propose a spatially detailed cost-minimizing model for coal and agricultural production in a region under constraints on land and water availability. We apply the model to the case study of Shanxi province, China. We show how such an integrated optimization, which takes maximum advantage of the spatial heterogeneity in resource abundance, could help resolve the conflicts around the water–food–energy (WFE) nexus and assist in its management. We quantify the production-possibility frontiers under different water-availability scenarios and demonstrate that in water-scarce regions, like Shanxi, the production capacity and corresponding production solutions are highly sensitive to water constraints. The shadow prices estimated in the model could be the basis for intelligent differentiated water pricing, not only to enable the water-resource transfer between agriculture and the coal industry, and across regions, but also to achieve cost-effective WFE management.
Show more [+] Less [-]Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture Full text
2018
Thirumdas, Rohit | Kothakota, Anjinelyulu | Annapure, Uday | Siliveru, Kaliramesh | Blundell, Renald | Gatt, Ruben | Valdramidis, Vasilis P.
Cold plasma is an emerging non-thermal disinfection and surface modification technology which is chemical free, and eco-friendly. Plasma treatment of water, termed as plasma activated water (PAW), creates an acidic environment which results in changes of the redox potential, conductivity and in the formation of reactive oxygen (ROS) and nitrogen species (RNS). As a result, PAW has different chemical composition than water and can serve as an alternative method for microbial disinfection.This paper reviews the different plasma sources employed for PAW generation, its physico-chemical properties and potential areas of PAW applications. More specifically, the physical and chemical properties of PAW are outlined in relation to the acidity, conductivity, redox potential, and concentration of ROS, RNS in the treated water. All these effects are in microbial nature, so the applications of PAW for microbial disinfection are also summarized in this review. Finally, the role of PAW in improving the agricultural practices, for example, promoting seed germination and plant growth, is also presented.PAW appears to have a synergistic effect on the disinfection of food while it can also promote seedling growth of seeds. The increase in the nitrate and nitrite ions in the PAW could be the main reason for the increase in plant growth. Soaking seeds in PAW not only serves as an anti-bacterial but also enhances the seed germination and plant growth. PAW could potentially be used to increase crop yield and to fight against the drought stress environmental conditions.
Show more [+] Less [-]Involving the Water–Energy–Food Nexus in Integrating Low-Income and Isolated Communities Full text
2018
Cansino-Loeza, Brenda | Ponce-Ortega, José María
This work presents a general mathematical programming model for satisfying water, energy, and food needs in isolated and low-income communities involving different process integration approaches. The problem consists in determining the optimal and sustainable configuration to satisfy the energy, water, and food demands of the inhabitants. Also, the use of waste-to-energy technologies is proposed to handle the municipal solid waste correctly and obtain valuated products from wastes to reduce the environmental impact. A multiobjective analysis is presented considering the consumption of fresh water, the greenhouse gas emissions, and the cost of the integrated system as objective functions. As a case study, the community with the lowest index of poverty and marginalization from the State of Guerrero in Mexico is presented. The results show that it is possible to satisfy the water, energy, and food needs in isolated communities accounting for integrated processes. Besides, it is possible to obtain trade-off solutions considering contradicting objectives.
Show more [+] Less [-]Quantitative modeling of interconnections associated with sustainable food, energy and water (FEW) systems Full text
2018
Karan, Ebrahim | Asadi, Somayeh
The increasing costs of energy and water, fossil fuel depletion, and food shortages caused by climate change challenge long-term sustainability of food, energy, and water (FEW) systems. In working toward sustainable development, a fundamental question for deciding on whether and how to invest in FEW systems is “how sustainable FEW systems are?”. In order to measure sustainability across the FEW systems, an integrated sustainability index (SI) is developed. The SI is comprised of three components; food, energy, and water. These components each consist of different sub-components (e.g. transportation fuel for energy component) that make up integrated FEW systems. The sustainability of an FEW system can be calculated using the integrated FEW SI, but a more thought provoking question is to understand how each sub-component affects overall sustainability of the system. This cannot be achieved without formulating the interconnections associated with FEW components. This study formulates interconnections associated with FEW components. In an effort to increase the degree to which the results would generalize to FEW systems with different scales, the calculations of the study are performed for a sustainable FEW system that can consistently yield food for a family of four (two adults and two children) and supply its own water and energy needs from sustainable sources. Also, the sustainability is measured for two systems located in two different climates; one is relatively cloudy and humid and the other is sunny and arid. The results show that the highest sustainability improvement in both climates is associated with irrigation sub-component. Not only a sustainable water supply for irrigation sub-component improves the sustainability of water component, it also improves food sustainability and consequently energy sustainability. This finding can be explained by the fact that the irrigation sub-component is a resource supplier for grain sub-component, and that is a resource supplier for transportation fuel sub-component.
Show more [+] Less [-]