Refine search
Results 1-3 of 3
The influence of snow cover, air temperature, and groundwater flow on the active-layer thermal regime of Arctic hillslopes drained by water tracks | Influence de la couverture neigeuse, de la température de l’air et de l’écoulement des eaux souterraines sur le régime thermique de la couche active des versants de l’Arctique drainés par des chenaux La influencia de la cubierta de nieve, la temperatura del aire y el flujo de aguas subterráneas en el régimen térmico de la capa activa de las laderas del Ártico drenadas mediante vertientes de agua 冰雪覆盖、气温和地下水流动对水迹排水的北极山坡融冻层热状态的影响 A influência da cobertura de neve, temperatura do ar, e fluxo das águas subterrâneas no regime termal da camada ativa de encostas no Árticas drenadas por trilhas de água Full text
2020
Rushlow, Caitlin R. | Sawyer, Audrey H. | Voss, Clifford I. | Godsey, Sarah E.
Permafrost in Arctic watersheds limits soil biological activity to a thin, seasonally thawed active layer that contributes water to streams. In many hillslopes, relatively wet drainage features called water tracks have distinct freeze-thaw patterns that affect groundwater flow and storage, and thus the export of heat and solutes to Arctic streams. This study uses groundwater flow and energy transport models to examine potential controls on the timing and duration of freeze–thaw conditions and the magnitude of temperature fluctuations within water tracks and their adjacent hillslopes. The simulated length of the active-layer thaw season varies by 1 month over the range of snow-cover and mean annual air-temperature scenarios simulated. The timing and duration of freezing is particularly sensitive to depth and duration of snow cover. Thus, the deeper snowpack covers that can accumulate in water tracks contribute to their more persistent thaw conditions and their ability to conduct groundwater downslope. A three-dimensional simulation shows that during the summer thaw season, the water track captures groundwater laterally from half way across the hillslope. The models presented here elucidate key mechanisms driving small-scale variation in the active-layer thermal regime of tundra hillslopes, which may be responsible for changes in drainage-network geometry and Arctic biogeochemical fluxes under a warming climate.
Show more [+] Less [-]Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia) | Variabilité saisonnière et spatiale du bilan d’eau de la toundra polygonale: Delta de la rivière Lena, Nord Sibérien (Russie) Variabilidad espacial y estacional del balance de agua de polígonos de tundra: Delta del Río Lena, norte de Siberia (Rusia) 多边形冻原地下水均衡的空间和季节变化:以俄罗斯北西伯利亚的Lena河三角洲为例 Variabilidade espacial e sazonal do balanço hídrico da tundra poligonal: Delta do rio Lena, norte da Sibéria (Rússia) Full text
2013
Helbig, Manuel | Boike, Julia | Langer, Moritz | Schreiber, Peter | Runkle, BenjaminR. K. | Kutzbach, Lars
The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.
Show more [+] Less [-]Simulation of subsurface heat and water dynamics, and runoff generation in mountainous permafrost conditions, in the Upper Kolyma River basin, Russia | Simulation de la chaleur, de la dynamique de l’eau de subsurface et du ruissellement dans des conditions de pergélisol montagneux continu, Bassin supérieur de la Rivière Kolyma, Russie Simulation der Bodenwärme- und Bodenwasserdynamik sowie der Abflussbildung unter Permafrostbedingungen in den Gebirgsregionen des Oberen Kolyma Flusseinzugsgebiets, Russland Simulación del calor subsuperficial y dinámica del agua, y generación de escurrimiento en condiciones de permafrost de montaña, en la cuenca alta del Río Kolyma, Rusia 地热和地下水的动力学模拟与山区永久冻土条件下的产流:以俄罗斯Kolyma河上游平原为例 Simulace podpovrchového tepla, dynamiky vody a tvorby odtoku v podmínkách horského permafrostu, horní povodí řeky Kolyma, Rusko Simulazione delle dinamiche di acqua e calore del sottosuolo e della generazione di portata idrica in condizioni di permafrost di mongagna nell‘Altopiano della Kolyma in Russia Simulação de calor, da dinâmica da água no subsolo e da geração de escoamento em condições montanhosas de permafrost na bacia superior do rio Kolyma, Rússia Моделирование динамики тепла и влаги в слое сезонного протаивания и процессов формирования стока в горных условиях бассейна Верхней Колымы, Россия Simulácia dynamiky podpovrchového toku tepla v vody a tvorby odtoku v podmienkach horského permafrostu v povodí hornej Kolymy, Rusko Full text
2013
Semenova, Olga | Lebedeva, L. F. (Li︠u︡dmila Fedorovna) | Vinogradov, Yury
The Hydrograph model (a distributed process-based model) was applied to the simulation of soil freeze-thaw and runoff processes, to assess the viability of the model approach and the influence of specific environmental factors in a permafrost environment. Three mountainous permafrost watersheds were studied, at the Kolyma Water Balance Station in north-eastern Russia. The watersheds include rocky talus, mountainous tundra and moist larch-forest landscape regimes, and they were modelled at daily time-steps for the period 1971–1984. Simulated results of soil freeze-thaw depth and runoff showed reasonable agreement with observed values. This study reveals and mathematically describes the dependence of surface and subsurface flow on thawing depth and landscape characteristics. Process analysis and modelling in permafrost regions, including ungauged basins, is suggested, with observable properties of landscapes being used as model parameters, combined with an appropriate level of physically based conceptualization.
Show more [+] Less [-]