Refine search
Results 1-2 of 2
Causes and Extent of Declines among Native North American Invertebrate Pollinators: Detection, Evidence, and Consequences Full text
2001
James H. Cane | Vincent J. Tepedino
Ecosystem health and agricultural wealth in North America depend on a particular invertebrate fauna to deliver pollination services. Extensive losses in pollinator guilds and communities can disrupt ecosystem integrity, a circumstance that today forces most farmers to rely on honey bees for much fruit and seed production. Are North America's invertebrate pollinator faunas already widely diminished or currently threatened by human activities? How would we know, what are the spatiotemporal scales for detection, and which anthropogenic factors are responsible? Answers to these questions were considered by participants in a workshop sponsored by the National Center for Ecological Analysis and Synthesis in October of 1999, and these questions form the nucleus for the papers in this special issue. Several contributors critically interpret the evidence for declines of bee and fly pollinators, the pollination deficits that should ensue, and their economic costs. Spatiotemporal unruliness in pollinator numbers, particularly bees, is shown to hinder our current insights, highlighting the need for refined survey and sampling designs. At the same time, two remarkable studies clearly show the long-term persistence of members of complex bee communities. Other authors offer new perspectives on habitat fragmentation and global warming as drivers of pollinator declines. Bees and lepidopterans are contrasted in terms of their natural genetic variation and their consequent resilience in the face of population declines. Overall, many ecologists and conservation biologists have not fully appreciated the daunting challenges that accompany sampling designs, taxonomy, and the natural history of bees, flies, and other invertebrate pollinators, a circumstance that must be remedied if we are to reliably monitor invertebrate pollinator populations and respond to their declines with effective conservation measures.
Show more [+] Less [-]Butterfly Species Richness Patterns in Canada: Energy, Heterogeneity, and the Potential Consequences of Climate Change Full text
2001
Jeremy T. Kerr
The distributions of most pollinator species are poorly documented despite their importance in providing ecosystem services. While these and other organisms are threatened by many aspects of the human enterprise, anthropogenic climate change is potentially the most severe threat to pollinator biodiversity. Mounting evidence demonstrates that there have already been biotic responses to the relatively small climate changes that have occurred this century. These include wholesale shifts of relatively well-documented butterfly and bird species in Europe and North America. Although studies of such phenomena are supported by circumstantial evidence, their findings are also consistent with predictions derived from current models of spatial patterns of species richness. Using new GIS methods that are highly precise and accurate, I document spatial patterns of Canadian butterfly diversity. These are strongly related to contemporary climate and particularly to potential evapotranspiration. An even more noteworthy finding is the fact that, for the first time, habitat heterogeneity, measured as the number of land cover types in each study unit, is proven to be an equally strong predictor of butterfly richness in a region where energy alone was thought to be the best predictor of diversity. Although previous studies reveal similar relationships between energy and diversity, they fail to detect the powerful link between richness and habitat heterogeneity. The butterflies of Canada provide a superb baseline for studying the effects of climate on contemporary patterns of species richness and comprise the only complete pollinator taxon for which this sort of analysis is currently possible.
Show more [+] Less [-]