Resuscitation of anesthetized endotoxemic pigs by use of hypertonic saline solution containing dextran.
1993
Hellyer P.W. | Meyer R.E. | Olson N.C.
We evaluated the biochemical and hemodynamic response to hypertonic saline solution plus dextran in isoflurane-anesthetized pigs infused IV with Escherichia coli endotoxin (5 micrograms/kg of body weight for 0 to 1 hour + 2 micrograms/kg for 1 to 4 hours). After 120 minutes of endotoxemia, pigs were treated with a bolus (4 ml/kg over 3 minutes) of either normal saline solution (NSS; 0.9% NaCl), or hypertonic saline solution plus dextran (HSSD; 7.5% NaCl + 6% dextran-70). Administration of HSSD significantly (P < 0.05) increased serum osmolality and concentrations of sodium and chloride for approximately 2 hours during endotoxemia. Plasma total protein concentration decreased significantly (P < 0.05) for 2 hours after treatment with HSSD, indicating hemodilution and increased plasma volume. Although HSSD transiently increased cardiac index (CI) for approximately 15 minutes, this effect was not sustained; however, the endotoxin-induced decrease in CI was ameliorated from 120 to 180 minutes. In pigs of the endotoxin + NSS group from 180 to 240 minutes, CI decreased significantly (P < 0.05), compared with baseline and control values. The endotoxin-induced increases in mean pulmonary arterial pressure and pulmonary vascular resistance were not attenuated by HSSD. At 135 minutes, total peripheral vascular resistance was transiently lower (for approx 15 minutes) in pigs treated with HSSD, compared with control pigs. The endotoxin-induced increase in plasma lactate concentration was not attenuated by HSSD, indicating continued peripheral O2 debt. We conclude that, despite sustained increases in serum osmolality and concentrations of sodium and chloride, HSSD has only transiently beneficial cardiopulmonary effects during endotoxemia in pigs.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Wolters Kluwer