Study of Cu(II) Chemisorption Mechanisms on Modified Carbon Nanotubes Based on Isotherms, Column Experiments, and FTIR First Derivative Analysis
2015
Rosenzweig, Shirley | Sorial, George A. | Sahle-Demessie, Endalkachew | Luxton, Todd
The objective of this study was to investigate the chemisorption mechanisms of Cu(II) on alcohol functionalized carbon nanotubes (OH-CNT) compared to granulated activated carbon (F-400). Two different sizes of OH-CNT were used on both adsorption isotherm experiments and continuous-flow fixed-bed columns. The experiments were conducted as a function of adsorbent type with fixed bed height (5 cm), fixed flow rate (0.035 mL/min), and one initial Cu(II) concentration (10 mg/L) at pH 5.1 and room temperature. Isotherm curves follow Freundlich model with better adsorption capacity for OH-CNT (6.3 and 15.7 mg/g) compared to F-400 (6.0 mg/g). Breakthrough curves for all adsorbents were typical, while OH-CNT showed higher capacity to treat water per amount of adsorbent than F-400. After 5 days of desorption, there was very little Cu(II) leached from the OH-CNT column as compared to F-400 that slowly desorbed 85 % of Cu(II). These results indicated chemisorption process on OH-CNT with low residual release of Cu(II) from adsorbent after reaching saturation. A systematic correlation method using converted FTIR absorbance curves (first derivative analysis) of as-received and hybrid OH-CNT identified new peaks on the spectra for Cu(II) chemisorbed on CNT surface, showing that Cu(II) target acidic functional groups during adsorption.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library