Importance of the structure and nanoporosity of organic matter on the desorption kinetics of benzo[a]pyrene in sediments
2017
Huang, Youda | Zhang, Dainan | Duan, Dandan | Yang, Yu | Xiong, Yongqiang | Ran, Yong
The desorption kinetics and mechanism were investigated using a Tenax extraction technique on different sediments spiked with radiocarbon-labeled benzo[a]pyrene (BaP). Five sedimentary fractions were sequentially fractionated, and the only nonhydrolyzable organic carbon fractions (NHC) were characterized using advanced solid-state 13C nuclear magnetic resonance spectroscopy (NMR), improved six end-member model, and a CO2 gas adsorption technique. The sediments contained high percentages of algaenan and/or sporopollenin but low percentages of black carbon and lignin. A first-order, two-compartment kinetics model described the desorption process very well (R2 > 0.990). Although some of the organic carbon fractions were significantly related to the desorption kinetics parameters, the NHC fractions showed the highly significant correlation. Moreover, the nanoporosity or specific surface area (SSA) of the NHC fractions was highly related to their OC contents and aliphatic C (R2 = 0.960, p < 0.01). The multiple regression equations among the desorption kinetics parameters, structural parameters, and nanoporosity were well established (R2=>0.999). Nanoporosity and aromatic C were the dominant contributors. Furthermore, the enhanced percentages of desorbed BaP at elevated temperatures significantly showed a linear regression with the structure and nanoporosity. To our knowledge, the above evidence demonstrates for the first time that the transfer (or diffusion) of BaP in the nanopores of condensed aromatic components is the dominant mechanism of the desorption kinetics of BaP at organic matter particle scale.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library