Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin
2016
Guo, Zhiqiang | Zhang, Wei | Du, Sen | Zhou, Yanyan | Gao, Na | Zhang, Li | Green, Iain
Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation (⁶⁵Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne ⁶⁵Cu for 48 h, during which the time course sampling was conducted to determine ⁶⁵Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest ⁶⁵Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest ⁶⁵Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne ⁶⁵Cu influx rate in the GT was positively correlated with ⁶⁵Cu contents of chyme in NDG, whereas it was largely negatively correlated with ⁶⁵Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library