Nitrogen-Regulated Interactions Between Microcystis aeruginosa and Spiramycin Contaminant
2015
Liu, Ying | Chen, Shi | Zhang, Jian | Gao, Baoyu
Nitrogen significantly regulated (p < 0.05) the effects of spiramycin on the growth and antioxidant responses of Microcystis aeruginosa as well as the biodegradation of spiramycin by M. aeruginosa during a 7-day exposure test. At a nitrogen level of 0.5 mg L⁻¹, the activities of superoxide dismutase and catalase were stimulated by 100–400 ng L⁻¹of spiramycin to protect algal cells from oxidative damage, resulting in alleviated toxicity of spiramycin and low malondialdehyde content in M. aeruginosa. The catalase activity was inhibited by 400 ng L⁻¹of spiramycin at higher nitrogen levels of 5–50 mg L⁻¹, leading to significant growth inhibition (p < 0.05) and higher malondialdehyde content through accumulation of hydrogen peroxide. Stimulated glutathione content and glutathione S-transferase activity were coupled to the biodegradation of spiramycin in M. aeruginosa. The 7-day biodegradation percentage of spiramycin varied from 8.9 to 29.6 %, which was enhanced by increased nitrogen concentration and decreased spiramycin concentration. Due to the regulation of algal growth, the toxicity of M. aeruginosa were significantly enhanced (p < 0.05) by 100 ng L⁻¹of spiramycin at a nitrogen concentration of 0.5 mg L⁻¹while significantly reduced (p < 0.05) by 400 ng L⁻¹of spiramycin at nitrogen levels of 5–50 mg L⁻¹, according to the luminescent bacteria test. Low concentration of coexisting spiramycin contaminant should be considered during the control of M. aeruginosa bloom, especially under nitrogen deficient condition.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library