Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability
2020
Li, Yunyi | Tian, Xiaoyu | Liang, Jialiang | Chen, Xinlei | Ye, Jiangyu | Liu, Yangsheng | Liu, Yuanyuan | Wei, Yunmei
A large amounts of arable land is facing a high risk of hexavalent chromium (Cr(VI)) pollution, which requires remediation using a low toxic agent. In this study, the remediation effect of amorphous iron pyrite (FeS₂₍ₐₘ₎) on Cr(VI) in Cr(VI)-contaminated soil was evaluated by systematically analyzing the variation of the leachability, bioaccessibility, phytotoxicity, and long-term stability of the remediated soil. The effectiveness of FeS₂₍ₐₘ₎ on the leachability was assessed by alkaline digestion and the toxicity characteristic leaching procedure (TCLP); the effect on the bioaccessibility was evaluated via the physiologically based extraction test (PBET) and the Tessier sequential extraction; the effect on the phytotoxicity was assessed via phytotoxicity bioassay (seed germination experiments) based on rape (Brassica napus L.) and cucumber (Cucumis Sativus L.), and the long-term stability of the Cr(VI)-remediated soil was appraised using column tests with groundwater and acid rain as the influents. The results show that FeS₂₍ₐₘ₎, with a stoichiometry of 4× exhibited a high efficiency in the remediation of Cr(VI) and decreased its leachability and bioaccessibility during the 30-day remediation period. In addition, seed germination rate, accumulation and translocation of Cr, and root and shoot elongation of rape and cucumber of remediated soil are not significantly different from those of clean soil, illustrating that FeS₂₍ₐₘ₎ is suitable for remediating Cr(VI) contaminated arable soil. The stabilization of Cr(VI) in contaminated soil using FeS₂₍ₐₘ₎ was maintained for 1575 days. The long-term effectiveness was further confirmed by the increasing amount of free Fe and Mn in the effluent and the decreasing redox potential. In summary, FeS₂₍ₐₘ₎ has an excellent efficiency for the remediation of Cr(VI), demonstrating it is a very promising alternative for use in the contaminated arable soil.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library