How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China
2020
Huang, Huanfang | Li, Jun | Zhang, Yuan | Chen, Wenwen | Ding, Yang | Chen, Wei | Qi, Shihua
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ₁₀DDTs) ranging 37.7–70,100 pg g⁻¹ dw and 3.4–175 pg m⁻³, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ₁₀DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library