Microplastics as vectors of radioiodine in the marine environment: A study on sorption and interaction mechanism
2022
Rout, Sabyasachi | Yadav, Sonali | Joshi, Vikram | Karpe, Rupali | Pulhani, Vandana | Kumar, A.V.
Radioiodine is one of the long-lived fission products and also an important radionuclide released during nuclear accidents, which generates interest in its environmental fate. Its sorption has been studied in a wide range of materials, but no equivalent study exists for microplastics, an emerging environmental vector. Weathering and biofilm formation on microplastics can enhance radioiodine sorption. For the first time, we're reporting how radioiodine interacts with different types of polyethylene derived microplastics (pristine, irradiated, and biofilm developed microplastics). This study revealed that exposure to radiation and the marine environment significantly alters the physico-chemical properties of microplastics. In particular, in marine-exposed samples, a signature of biofilm development was detected. Speciation study indicates that iodine exists in the iodide form in the studied marine environment. The study revealed that, iodide ions attach to biofilm-developed microplastics via electrostatic, ion-dipole, pore filling, and van der Waals interactions. Pore filling, ion-dipole, and van der Waals interactions may cause iodide binding to irradiated microplastics, whereas pore-filling and van der Waals interactions cause iodide binding to pristine microplastics. The distribution coefficient (Kd) of iodine on microplastics is positively correlated with biofilm biomass, which signifies the role of biofilm in radioiodine uptake. The Kd indicates microplastics are potential iodide accumulators and could be a possible vector in the marine system.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library