Dose-related telomere damage associated with the genetic polymorphisms of cGAS/STING signaling pathway in the workers exposed by PAHs
2020
Duan, Xiaoran | Yang, Yongli | Wang, Sihua | Feng, Xiaolei | Wang, Tuanwei | Wang, Pengpeng | Ding, Mingcui | Zhang, Hui | Liu, Bin | Wei, Wan | Yao, Wu | Cui, Liuxin | Zhou, Xiaoshan | Wang, Wei
Telomeres are located at the end of eukaryotic chromosomes and vulnerable to exogenous chemical compounds. Exposure to coke oven emissions (COEs) leads to a dose-related telomere damage, and such chromosomal damage might trigger the cGAS/STING signaling pathway which plays an important role in immune surveillance. However, the relationship between the genetic variations in the cGAS/STING signaling pathway and telomere damage in the COEs-exposure workers has not been investigated. Therefore, we recruited 544 coke oven workers and 238 healthy control participants, and determined the level of COEs exposure, concentration of urinary 1-hydroxypyrene (1-OHPYR), genetic polymorphisms and telomere length. The results showed that the telomere length significantly decreased from the control-to high-exposure groups as defined by the external exposure level (P < 0.05). The results also indicated that STING rs7447927 CC, cGAS rs34413328 AA, and cGAS rs610913 AA could inhibit telomere shortening in the exposure group (P < 0.05), and cGAS rs34413328, urine 1-OHPYR and cumulative exposure dose (CED) had a significant association with telomere length by generalized linear model. In conclusion, telomere shortening was a combined consequence of short-term exposure, long-term exposure, and genetic variations among the COEs-exposure workers.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library