Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite
2016
Cao, Jia-Shun | Wang, Cheng | Fang, Fang | Lin, Jun-Xiong
Palygorskite (PAL) is a good heavy metal adsorbent due to its high surface area, low cost, and environmentally compatibility. But the natural PAL has limited its adsorption capacity and selectivity. In this study, a cost-effective and readily-generated absorbent, l-threonine-modified palygorskite (L-PAL), was used and its performance for Cu(II) removal in simulated aquaculture wastewater was evaluated. After preparation, L-PAL was characterized by using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The impacts of pH, adsorbent dosage, contact time, and initial Cu(II) concentration on the adsorption capacity of L-PAL were examined. The Cu(II) adsorption capacity on L-PAL was enhanced almost 10 times than that of raw PAL. The adsorption isotherms of Cu(II) fit the Langmuir isotherms, and the adsorption kinetics was dominated by the pseudo-second-order model. The thermodynamic parameters at four temperatures were calculated, which indicated that the adsorption was spontaneous and endothermic. The adsorption mechanism involves complexation, chelation, electrostatic attraction, and micro-precipitation. Furthermore, L-PAL is shown to have a high regeneration capacity. These results indicate that L-PAL is a cheap and promising absorbent for Cu(II) removal and hold potential to be used for aquaculture wastewater treatment.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library