A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA
2009
Wang, Steven | Stiles, Thomas | Flynn, Trevor | Stahl, Anthony J. | Gutierrez, Jonathan L. | Angelo, Robert T. | Frees, Lyle
Impairment of water quality is a major concern for streams and rivers in the central USA. Total maximum daily loads (TMDLs) establish a watershed framework and set management targets to alleviate pollution from both point and nonpoint sources. For this study, we have used a hydrologic modeling approach to holistically examine the effect of land use management, urban development, and agricultural practices on sediment and nutrient loadings in an agricultural watershed. Annualized Agricultural Nonpoint Source (AnnAGNPS) simulation indicates that while point source dischargers contribute 8% of total nitrogen (TN) and 24% of total phosphorus (TP) loadings to the Marmaton River, agricultural nonpoint sources are the leading pollution source contributing 55% of TN and 49% of TP loading. Based on TMDL analysis and model simulation, 3% of the watershed area (3,244 ha) needs to be targeted to control TN loading whereas 1% of the total area (1,319 ha) is required for TP reduction management. Managing the TN areas alone can achieve a 57% reduction in the TP load required for the TMDL, whereas managing the targeted TP areas can only provide 30% of the required TN reduction. Areas required both TN and TP management comprise 469 ha. Targeting these areas can achieve approximately 22% of the required TN reduction and 29% of the required TP reduction. Overall, 4,094 ha will require management to achieve water quality goals. This study demonstrates that a modeling approach is needed to effectively address TMDL issues and help identify targeted areas for management.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library