Effects of nanoTiO2 on tomato plants under different irradiances
2019
Ko, Jung Aa | Hwang, Yu Sik
In this study, we investigated the physiological and photochemical influences of nanoTiO2 exposure on tomato plants (Lycopersicum esculentum Mill.). Tomato plants were exposed to 100 mg L−1 of nanoTiO2 for 90 days in a hydroponic system. Light irradiances of 135 and 550 μmolphoton m−2 s−1 were applied as environmental stressors that could affect uptake of nanoTiO2. To quantify nanoTiO2 accumulation in plant bodies and roots, we used transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, and X-ray powder diffraction. Phenotypic and physiological influences such as color change, growth rate, fruit productivity, pigment concentration, and enzyme activity (SOD, CAT, APX) were monitored. We observed numerous effects caused by high irradiance and nanoTiO2 exposure, such as rapid chlorophyll decrease, increased anthocyanin and carotenoid concentrations, high enzymatic activity, and an approximately eight-fold increase in fruit production. Moreover, light absorption in the nanoTiO2-treated tomato plants, as measured by a ultraviolet–visible light spectrometer, increased by a factor of approximately 19, likely due to natural pigments that worked as sensitizers, and this resulted in an ∼120% increase in photochemical activities on A, ФPSII, ФCO2, gsw, and E.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library