Light Intensity Affects Ozone-Induced Stomatal Sluggishness in Snapbean
2016
Hoshika, Yasutomo | De Marco, Alessandra | Materassi, Alessandro | Paoletti, Elena
Tropospheric ozone (O₃) is the air pollutant of most concern to vegetation at present. Ozone impacts on stomata are still controversial, as both decreased stomatal conductance and slow stomatal responses to environmental stimuli (namely, stomatal sluggishness) have been shown. We postulated that the light environment affects stomatal sluggishness. To concurrently manipulate O₃ and light conditions and measure gas exchange at leaf level, we developed an innovative O₃ exposure system by modifying a commercially available gas exchange system. We exposed the first trifoliate leaf of the O₃-sensitive genotype S156 of snapbean (Phaseolus vulgaris) to a 1-h O₃ exposure (150 ppb) under 1000 μmol m⁻² s⁻¹ photosynthetic photon flux density, so that stomata were fully open and O₃ uptake was maximized. Then, leaves were subjected to different light intensities (200, 1000, or 1500 μmol m⁻² s⁻¹) until a steady state was reached. As a metric of sluggishness, we quantified the stomatal responses to a sharp water stress generated by cutting the petiole at steady state. The results showed that O₃ exposure induced stomatal sluggishness only under high light (stomata needed 53 % more time to half stomatal conductance relative to steady state) and did not when the plants were under lower light intensities. We conclude that O₃-induced stomatal sluggishness may occur only in fully irradiated leaves, and suggest it is a minor response when entire crowns and canopies are assessed and a major reason of the higher O₃ sensitivity of sun leaves than of shade leaves.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library