Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants
2019
Rossi, Lorenzo | Bagheri, Majid | Zhang, Weilan | Chen, Zehua | Burken, Joel G. | Ma, Xingmao
Heavy metals and emerging engineered nanoparticles (ENPs) are two current environmental concerns that have attracted considerable attention. Cerium oxide nanoparticles (CeO₂NPs) are now used in a plethora of industrial products, while cadmium (Cd) is a great environmental concern because of its toxicity to animals and humans. Up to now, the interactions between heavy metals, nanoparticles and plants have not been extensively studied. The main objectives of this study were (i) to determine the synergistic effects of Cd and CeO₂NPs on the physiological parameters of Brassica and their accumulation in plant tissues and (ii) to explore the underlying physiological/phenotypical effects that drive these specific changes in plant accumulation using Artificial Neural Network (ANN) as an alternative methodology to modeling and simulating plant uptake of Ce and Cd. The combinations of three cadmium levels (0 [control] and 0.25 and 1 mg/kg of dry soil) and two CeO₂NPs concentrations (0 [control] and 500 mg/kg of dry soil) were investigated. The results showed high interactions of co-existing CeO₂NPs and Cd on plant uptake of these metal elements and their interactive effects on plant physiology. ANN also identified key physiological factors affecting plant uptake of co-occurring Cd and CeO₂NPs. Specifically, the results showed that root fresh weight and the net photosynthesis rate are parameters governing Ce uptake in plant leaves and roots while root fresh weight and Fᵥ/Fₘ ratio are parameters affecting Cd uptake in leaves and roots. Overall, ANN is a capable approach to model plant uptake of co-occurring CeO₂NPs and Cd.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library