The Modeling of Nitrogen Mass Transport in CoCr Alloys
2016
Petraitienė, Akvilė
The kinetics of plasma nitriding of CoCr alloy below temperatures of nitrides formation and mechanisms of nitrogen penetration are analyzed by proposed kinetic modeling in this article. Proposed nitrogen diffusion model is based on the trapping – detrapping (TD) model and developed taking into account the effect of the concentration dependent diffusivity of nitrogen, nitrogen adsorption on the surface of alloy and surface swelling process. The model indicates the influence of chromium atoms to nitrogen atoms diffusivity. The model consists of time and depth dependent diffusion, which is described by a partial differential equation, and it is solved by using Crank – Nicolson finite difference method. By fitting of experimental nitrogen depth profiles, it is shown that nitrogen diffusion coefficient varies with nitrogen concentration according to Einstein-Smoluchowski relation. Nitrogen depth profiles in plasma nitrided medical grade CoCr alloy (ISO 5831 – 12) at T = 400 °C for 1, 4 and 20 hours calculated on the basis of this model are in good agreement with experimental nitrogen profiles. Furthermore, the swelling process is showed and analyzed, derived the dependency of swelling rate on nitriding duration – the swelling rate is inversely proportional to the square root of nitriding duration. The obtained diffusion coefficient value and the swelling process rates satisfy the experimental data form Ref. The derived model explains physical processes during plasma nitriding and allows obtaining nitrogen depth profiles for any requisite nitriding duration.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library