Metabolic process of di-n-butyl phthalate (DBP) by Enterobacter sp. DNB-S2, isolated from Mollisol region in China
2019
Sun, Ruixue | Wang, Lei | Jiao, Yaqi | Zhang, Ying | Zhang, Xing | Wu, Pan | Chen, Zhaobo | Feng, Chengcheng | Li, Ying | Li, Xiaoqian | Yan, Lilong
The accumulation of phthalate acid esters (PAEs) in the environment has aroused a global concern. Microbial degradation is the most promising method for removing PAEs from polluted environment. Di-n-butyl phthalate (DBP) is one of the most widely used PAEs. In this study, a highly efficient DBP-degrading strain, Enterobacter sp. DNB-S2 was isolated from Mollisol in northeast China, and the degradation rate of 500 mg L⁻¹ DBP reached 44.10% at 5 °C and 91.08% at 50 °C within 7 days. A new intermediate, n-butyl benzoate BP, was detected, implying a new degradation pathway. The complete genome of the strain DNB-S2 was successfully sequenced to comprehensively understand of the entire DBP catabolic process. Key genes were proposed to be involved in DBP degradation, such as esterases, 3,4-dihydroxybenzoate decarboxylase and catechol 2,3-dioxygenase genes. Intermediate-utilization tests and real-time quantitative polymerase chain reaction (RT-qPCR) validated the proposed DBP catabolic pathway. The aboriginal bacterium DNB-S2 is a promising germplasm for restoring PAE-contaminated Mollisol regions at low temperature. This study provides novel insight into the catabolic mechanisms and abundant gene resources of PAE biodegradation.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library