Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials
2014
Sun, Tian Yin | Gottschalk, Fadri | Hungerbühler, Konrad | Nowack, Bernd
Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library