Conservation interests of applying spatial distribution modelling to large vagile Neotropical mammals
2014
Clément, Luc | Catzeflis, François, M. | Richard-Hansen, Cécile | Barrioz, Sébastien | de Thoisy, Benoît | Association Kwata | Institut des Sciences de l'Evolution de Montpellier (UMR ISEM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS) | Office National de la Chasse et de la Faune Sauvage | Office français de la biodiversité (OFB) | Ecologie des forêts de Guyane (UMR ECOFOG) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
Mostrar más [+] Menos [-]Inglés. Species Distribution Models (SDMs) have become increasingly useful for conservation issues. Initially designed to predict distributions of species from incomplete datasets, SDMs may also identify environmental conditions associated with higher occurrences and abundances of widely distributed taxa. Using sighting records of 15 widely distributed mammals from French Guiana, including primates, carnivores, rodents and ungulates, we used three SDMs-based on (i) entropy, (ii) genetic algorithm, (iii) Mahalanobis distance-to investigate relationships between species occurrence and predictive variables such as vegetation, biogeographic units, climate, and disturbance index. Maximal entropy procedures resulted in more accurate projected conditions: the accuracy of the predicted distributions was higher than 90% in nine species among the 15 tested, and predicted occurrences were correlated to field-measured abundances for nine species. The Genetic algorithm implemented with GARP had lower accuracy, with predicted occurrences correlated to abundances for three species only. Finally, Mahalanobis distance had a much lower performance and failed to find any correlation between occurrences and abundances. In the case of MaxEnt modelling, since map projection summarized more appropriate environmental conditions and identified areas likely to act as sources and/or corridors, we propose to use those appropriate environmental conditions as a proxy of conductance for landscape connectivity planning. We provide evidence here that SDMs can identify not only more suitable environmental conditions, but also areas hosting higher abundances for a large set of species with key ecological roles. Further management applications of this environmental suitability index could help in designing corridors between protected areas.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por AgroParisTech