Spontaneous insertion of plant plasma membrane (H+) ATPase into a preformed bilayer
1991
Simon Plas, Françoise | Venema, Kees | Grouzis, Jean-Pierre | Gibrat, Rémy | Rigaud, Jacqueline | Grignon, Claude | Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Centre National de la Recherche Scientifique (CNRS) | Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
32 ref.
Mostrar más [+] Menos [-]International audience
Mostrar más [+] Menos [-]Inglés. The purified (H+ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H+-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)ATPase molecules were closely associated with liposomes, exhibiting a high H+-pumping activity (150,000% quenching· min–1·mg–1 protein of the probe 9-amino-6-chloro-2-methoxyacridine). The insertion was achieved within a few seconds. No latency of the (H+)ATPase hydrolytic activity was revealed when lysophosphatidylcholine was added to permeabilize the vesicles. This indicated that the (H+)ATPase molecules inserted unidirectionally, the catalytic sites being exposed outside the vesicles (ldquoinside-outrdquo orientation), and thus freely accessible to Mg-ATP. The nondelipidated (H+)ATPase could also functionally insert into bilayer from PC:PE:PG or PC:PE:PI, due to the presence of both hydrophobic defects promoted by PE, and negative phospholipids specifically required by the (H+)ATPase from corn roots. The detergent octylglucoside facilitated the delipidated (H+)ATPase reinsertion probably by promoting both a proper protein conformation and hydrophobic defects in the bilayer. Lysophosphatidylcholine facilitated the delipidated protein insertion only when hydrophobic defects were already present, and thus seemed only capable to ensure a proper protein conformation.
Mostrar más [+] Menos [-]Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Institut national de la recherche agronomique