First Report of Enterobacter hormaechei Isolated from Agricultural Soil in the Biodegradation of Glyphosate
2024
Badani, Hadjer | Haddad, Fatma Zohra | ElOuissi, AbdElKader
Several studies have explored the utilization of soil microorganisms, to address the environmental issues associated with glyphosate use and enhance crop yields. In our investigation, screening on Agar plate and broth medium Luria Bertani was carried out after isolating bacterial strains from rhizospheric agricultural soil in Mascara, Algeria, to biodegrade glyphosate, following that by testing the Plant Growth-Promoting Rhizobacteria and evaluate the effects of glyphosate on these proprieties. Our findings indicate that five bacterial strains exhibited growth in the presence of glyphosate concentrations up to 25 mg/ml, beyond this concentration the strains have developed tolerance. Following a partial examination of the 16S rRNA sequences, the bacterial strains were identified as belonging to the genus of Enterobacter. After 10 days of incubation with the glyphosate, Phosphate solubilization decreased in broth and agar Pikovskaya medium and the bacterial strains synthetized less of indole-3-acetic acid compared to the control, indicating the impact of glyphosate on these outcomes, high concentration of glyphosate inhibited nitrogen fixation, and various doses of glyphosate were found to restrict the growth of biofilms in these strains. The results of HPLC examination of secondary metabolites revealed that the primary degradation products of glyphosate in all strains were Sarcosine and Glycine. So, it seemed that the strain could both biodegrade glyphosate and use it for growth ,while also possessing rhizobacteria properties that promote plant development, enabling the use of the strains in the bioremediation of glyphosate-contaminated soils.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por University of Tehran