FAO AGRIS - Sistema Internacional para la Ciencia y Tecnología Agrícola

Reinforcement learning for crop management support: Review, prospects and challenges

Gautron, Romain | Maillard, Odalric-Ambryn | Preux, Philippe | Corbeels, Marc | Sabbadin, Régis | Agroécologie et intensification durables des cultures annuelles (UPR AIDA) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) [Cali] ; Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) [Rome] (Alliance) ; Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR) | Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS) | International Institute of Tropical Agriculture (IITA Kenya) ; International Institute of Tropical Agriculture [Nigeria] (IITA) ; Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work has been supported by: The French Agricultural Research Centre for International Development (CIRAD). The Consultative Group for International Agricultural Research (CGIAR) Platform for Big Data in Agriculture. Special thanks to Brian King. The French Ministry of Higher Education and Research, Hauts-de-France region, Inria within the Scool team project and MEL.

Palabras clave de AGROVOC

Información bibliográfica
Editorial
HAL CCSD, Elsevier
Otras materias
Decision support system; [sdv.sa.sta]life sciences [q-bio]/agricultural sciences/sciences and technics of agriculture; Multi-armed bandit; Reinforcement learning; [info.info-ai]computer science [cs]/artificial intelligence [cs.ai]; [sdv.sa.agro]life sciences [q-bio]/agricultural sciences/agronomy
Idioma
Inglés
ISBN
0009305672000
ISSN
04688044
Tipo
Journal Article; Journal Part; Journal Article; Journal Part
Fuente
ISSN: 0168-1699, EISSN: 1872-7107, Computers and Electronics in Agriculture, https://hal.science/hal-04688044, Computers and Electronics in Agriculture, 2022, 200, pp.107182. ⟨10.1016/j.compag.2022.107182⟩, https://www.sciencedirect.com/science/article/pii/S0168169922004999

2024-09-16
2025-01-31
Dublin Core
Proveedor de Datos
Buscar en Google Scholar
Si observa algún dato incorrecto en este registro bibliográfico, póngase en contacto con nosotros en [email protected]