Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels
2015
Petit, Elsa | Coppi, Maddalena V. | Hayes, James C. | Tolonen, Andrew C. | Warnick, Thomas | Latouf, William G. | Amisano, Danielle | Biddle, Amy | Mukherjee, Supratim | Ivanova, Natalia | Lykidis, Athanassios | Land, Miriam | Hauser, Loren | Kyrpides, Nikos | Henrissat, Bernard | Lau, Joanne | Schnell, Danny J. | Church, George M. | Leschine, Susan B. | Blanchard, Jeffrey L. | Department of Microbiology ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS) | Graduate Program in Molecular and Cellular Biology ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS) | Institute for Cellular Engineering ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS) | Genoscope - Centre national de séquençage [Evry] (GENOSCOPE) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | Génomique métabolique (UMR 8030) ; Genoscope - Centre national de séquençage [Evry] (GENOSCOPE) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS) | Department of Energy / Joint Genome Institute (DOE) ; Los Alamos National Laboratory (LANL) | Oak Ridge National Laboratory [Oak Ridge] (ORNL) ; UT-Battelle, LLC | Architecture et fonction des macromolécules biologiques (AFMB) ; Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Department of Biochemistry and Molecular Biology ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS) | Department of Genetics [Boston] ; Harvard Medical School [Boston] (HMS) | Department of Veterinary and Animal Sciences ; University of Massachusetts System (UMASS) | Graduate Program in Organismal and Evolutionary Biology ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS) | Department of Biology ; University of Massachusetts [Amherst] (UMass Amherst) ; University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS)
International audience
Mostrar más [+] Menos [-]Inglés. Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Institut national de la recherche agronomique