Methodology for the identification of relevant loci for milk traits in dairy cattle, using machine learning algorithms
2022
Raschia, Maria Agustina | Ríos, Pablo Javier | Maizon, Daniel Omar | Demitrio, Daniel Arturo | Poli, Mario Andres
Machine learning methods were considered efficient in identifying single nucleotide polymorphisms (SNP) underlying a trait of interest. This study aimed to construct predictive models using machine learning algorithms, to identify loci that best explain the variance in milk traits of dairy cattle. Further objectives involved validating the results by comparison with reported relevant regions and retrieving the pathways overrepresented by the genes flanking relevant SNPs. Regression models using XGBoost (XGB), LightGBM (LGB), and Random Forest (RF) algorithms were trained using estimated breeding values for milk production (EBVM), milk fat content (EBVF) and milk protein content (EBVP) as phenotypes and genotypes on 40417 SNPs as predictor variables. To evaluate their efficiency, metrics for actual vs. predicted values were determined in validation folds (XGB and LGB) and out-of-bag data (RF). Less than 4500 relevant SNPs were retrieved for each trait. Among the genes flanking them, signaling and transmembrane transporter activities were overrepresented. The models trained: •Predicted breeding values for animals not included in the dataset. •Were efficient in identifying a subset of SNPs explaining phenotypic variation. The results obtained using XGB and LGB algorithms agreed with previous results. Therefore, the method proposed could be applied for future association studies on milk traits.
Mostrar más [+] Menos [-]Instituto de Genética
Mostrar más [+] Menos [-]Fil: Raschia, Maria Agustina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Mostrar más [+] Menos [-]Fil: Ríos, Pablo J. Universidad de Buenos Aires; Argentina
Mostrar más [+] Menos [-]Fil: Ríos, Pablo J. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Mostrar más [+] Menos [-]Fil: Maizon, Daniel Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina
Mostrar más [+] Menos [-]Fil: Maizon, Daniel Omar. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina
Mostrar más [+] Menos [-]Fil: Demitrio, Daniel Arturo. Instituto Nacional de Tecnología Agropecuaria (INTA). Dirección General de Sistemas de Información, Comunicación y Procesos. Gerencia de Informática y Gestión de la Información; Argentina
Mostrar más [+] Menos [-]Fil: Demitrio, Daniel Arturo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Mostrar más [+] Menos [-]Fil: Poli, Mario Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Mostrar más [+] Menos [-]Fil: Poli, Mario Andres. Universidad del Salvador. Facultad de Ciencias Agrarias y Veterinaria; Argentina
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Instituto Nacional de Tecnología Agropecuaria