Determining Optimal Processing Conditions for Fabricating Industrial Moulds with Additive Manufacturing
2025
Daniel Moreno Nieto | Francisco Javier Puertas Morales | Julia Rivera Vera | Pedro Burgos Pintos | Daniel Moreno Sanchez | Sergio I. Molina
Additive manufacturing has reached a level of reliability and credibility that has already been integrated into specific industries producing final parts or tooling. Among Material Extrusion (ME) techniques, the Fused Granular Fabrication (FGF) method has enabled the development of Large Format Additive Manufacturing (LFAM) using polymeric materials, which has also established its presence in industries working with large prototypes, molds, and tools. This cost-efficient process has proven its applicability and success in manufacturing molds for composites, particularly in short and medium production runs, significantly reducing production times and costs. This paper presents two experiments designed to optimize process parameters when producing molds using the combined FGF and milling approach. These experiments identified optimal extrusion temperatures and extrusion multipliers to minimize defects at both the macro- and microscales for ASA 20 wt.% carbon fiber (CF) material; additionally, a correlation between milling speed, milling strategy, and surface roughness was established. These findings are valuable for industries adopting this innovative production method, as they provide guidance for defining process parameters to achieve the desired surface roughness of a specific part. A case study of the design of an automobile carter mold is presented, concluding that a specific range of milling speeds is required for conventional or climbing milling strategies to achieve a defined surface roughness range.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Directory of Open Access Journals