Estimating Forest Carbon Stock Using Enhanced ResNet and Sentinel-2 Imagery
2025
Jintong Ren | Lizhi Liu | You Wu | Lijian Ouyang | Zhenyu Yu
Accurate estimation of forest carbon stock is critical for understanding ecosystem carbon dynamics and informing climate mitigation strategies. This study presents a deep learning framework that integrates Sentinel-2 multispectral imagery with an enhanced residual neural network for estimating aboveground forest carbon stock in the Liuchong River Basin, Bijie City, Guizhou Province, China. The proposed model incorporates multiscale residual blocks and channel attention mechanisms to improve spatial feature extraction and spectral dependency modeling. A dataset of 150 ground inventory plots was employed for supervised training and validation. Comparative experiments with Random Forest, Gradient Boosting Decision Trees (GBDT), and Vision Transformer (ViT) demonstrate that the enhanced ResNet achieves the best performance, with a root mean square error (RMSE) of 23.02 Mg/ha and a coefficient of determination (R2) of 0.773 on the test set. Spatial mapping results further reveal that the model effectively captures fine-scale carbon stock variations across mountainous forested landscapes. These findings underscore the potential of combining multispectral remote sensing and advanced neural architectures for scalable, high-resolution forest carbon estimation in complex terrain.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Multidisciplinary Digital Publishing Institute