Bioregionalization analyses with the bioregion R package
2025
Denelle, Pierre | Leroy, Boris | Lenormand, Maxime | Georg-August-University of Göttingen = Georg-August-Universität Göttingen | Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) ; Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
Mostrar más [+] Menos [-]Inglés. Bioregionalization consists in the identification of spatial units with similar species composition and is a classical approach in the fields of biogeography and macroecology. The recent emergence of global databases, improvements in computational power and the development of clustering algorithms coming from the network theory have led to several major updates of the bioregionalizations of many taxa.A typical bioregionalization workflow involves five different steps: formatting the input data, computing a (dis)similarity matrix, selecting a bioregionalization algorithm, evaluating the resulting bioregionalization and mapping and interpreting the bioregions. For most of these steps, there are many options available in the methods and R packages.Here, we present bioregion, a package that includes all the steps of a bioregionalization workflow under a single architecture, with an exhaustive list of the bioregionalization algorithms used in biogeography and macroecology. These algorithms include (non-)hierarchical algorithms as well as community detection algorithms coming from the network theory. Some key methods from the literature, such as the network community detection algorithm Infomap or OSLOM (Order Statistics Local Optimization Method) that were not available in the R language are included in bioregion.By combining different methods coming from different fields to communicate easily, bioregion will allow a reproducible and complete comparison of the different bioregionalization methods, which is still missing in the literature.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Institut national de la recherche agronomique