Refinar búsqueda
Resultados 1001-1010 de 7,288
Modelling the distribution of fishing-related floating marine litter within the Bay of Biscay and its marine protected areas Texto completo
2022
Ruiz, Irene | Ana J., Abascal | Basurko, Oihane C. | Rubio, Anna
Modelling the distribution of fishing-related floating marine litter within the Bay of Biscay and its marine protected areas Texto completo
2022
Ruiz, Irene | Ana J., Abascal | Basurko, Oihane C. | Rubio, Anna
Sea-based sources account for 32–50 % of total marine litter found at the European basins with the fisheries sector comprising almost 65 % of litter releases. In the south-east coastal waters of the Bay of Biscay this figure approaches the contribution of just the floating marine litter fraction. This study seeks to enhance knowledge on the distribution patterns of floating marine litter generated by the fisheries sector within the Bay of Biscay and in particular on target priority Marine Protected Areas (MPAs) to reinforce marine litter prevention and mitigation policies. This objective is reached by combining the data on geographical distribution and intensity of fishing activity, long-term historical met-ocean databases, Monte Carlo simulations and Lagrangian modelling with floating marine litter source and abundance estimates for the Bay of Biscay. Results represent trajectories for two groups of fishing-related items considering their exposure to wind; they also provide their concentration within 34 MPAs. Zero windage coefficient is applied for low buoyant items not subjected to wind effect. Highly buoyant items, strongly driven by winds, are forced by currents and winds, using a windage coefficient of 4 %. Results show a high temporal variability on the distribution for both groups consistent with the met-ocean conditions in the area. Fishing-related items driven by a high windage coefficient rapidly beach, mainly in summer, and are almost non-existent on the sea surface after 90 days from releasing. This underlines the importance of windage effect on the coastal accumulation for the Bay of Biscay. Only around 20 % of particles escaped through the boundaries for both groups which gives added strength to the notion that the Bay of Biscay acts as accumulation region for marine litter. MPAs located over the French continental shelf experienced the highest concentrations (>75 particles/km²) suggesting their vulnerability and need for additional protection measures.
Mostrar más [+] Menos [-]Modelling the distribution of fishing-related floating marine litter within the Bay of Biscay and its marine protected areas Texto completo
2022
Ruiz, Irene | Abascal Santillana, Ana Julia | Basurko, Oihane C. | Rubio Compañy, Anna | Universidad de Cantabria
Sea-based sources account for 32-50 % of total marine litter found at the European basins with the fisheries sector comprising almost 65 % of litter releases. In the south-east coastal waters of the Bay of Biscay this figure approaches the contribution of just the floating marine litter fraction. This study seeks to enhance knowledge on the distribution patterns of floating marine litter generated by the fisheries sector within the Bay of Biscay and in particular on target priority Marine Protected Areas (MPAs) to reinforce marine litter prevention and mitigation policies. This objective is reached by combining the data on geographical distribution and intensity of fishing activity, long-term historical met-ocean databases, Monte Carlo simulations and Lagrangian modelling with floating marine litter source and abundance estimates for the Bay of Biscay. Results represent trajectories for two groups of fishing-related items considering their exposure to wind; they also provide their concentration within 34 MPAs. Zero windage coefficient is applied for low buoyant items not subjected to wind effect. Highly buoyant items, strongly driven by winds, are forced by currents and winds, using a windage coefficient of 4 %. Results show a high temporal variability on the distribution for both groups consistent with the met-ocean conditions in the area. Fishing-related items driven by a high windage coefficient rapidly beach, mainly in summer, and are almost non-existent on the sea surface after 90 days from releasing. This underlines the importance of windage effect on the coastal accumulation for the Bay of Biscay. Only around 20 % of particles escaped through the boundaries for both groups which gives added strength to the notion that the Bay of Biscay acts as accumulation region for marine litter. MPAs located over the French continental shelf experienced the highest concentrations (>75 particles/km2) suggesting their vulnerability and need for additional protection measures. | This research has been partially funded through the EU's LIFE Program (LIFE LEMA project, grant agreement no. LIFE15 ENV/ES/000252), EU’s H2020 Program (JERICO-S3 project, grant agreement No. 871153) and by the Spanish Ministry of Science and Innovation (OILHAZARD3D project, TRA2017-89164-R). This study has been conducted using E.U. Copernicus Marine Service Information. This is contribution number 1074 of AZTI, Marine Research, Basque Research and Technology Alliance (BRTA).
Mostrar más [+] Menos [-]Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions Texto completo
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Mostrar más [+] Menos [-]Effects of macrophytes and environmental factors on sediment denitrification in a subtropical reservoir Texto completo
2022
Bu, Hongmei | Fry, Brian | Burford, Michele A.
Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dₙ), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dₙ in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m⁻² d⁻¹, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m⁻² d⁻¹ in winter, spring and summer respectively. There were no statistical differences in Dₙ between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dₙ rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO₃⁻-N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dₙ. The correlation with NO₃⁻-N concentrations suggests that it may be a limited factor for Dₙ. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.
Mostrar más [+] Menos [-]Microplastic pollution in Bangladesh: Research and management needs Texto completo
2022
Islam, Tariqul | Li, Yanliang | Rob, Md Mahfuzur | Cheng, Hefa
Microplastics are omnipresent in the terrestrial and aquatic environment, and are considered as a potentially serious threat to the biodiversity and ecosystem. Pollution of plastic debris and microplastics in the inland and marine environment has raised concerns in Bangladesh, which is one of the most densely populated countries in the world. This review summarizes the research progress on separation and characterization of microplastics, as well as their occurrence and sources in Bangladesh. Despite of the first total ban on plastic bags in the world introduced back in 2002, microplastics have been ubiquitously detected in the country's inland and marine environment, with the majority of them coming from secondary sources. The microplastics observed in Bangladesh were dominated by fibers, which were derived mainly from textile sources. Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polyvinylchloride (PVC) were the most abundant polymers found for microplastics in the marine and freshwater environment of Bangladesh. Along with the identified research priorities to improve the understanding on the ecotoxicological effect and fate of microplastics, extensive and in-depth studies are required to bridge the knowledge gaps to enable comprehensive risk assessment of microplastic pollution on local ecosystems and human health, while effective management of plastic wastes and their recycling are necessary to alleviate this problem in the country.
Mostrar más [+] Menos [-]Zero valent iron or Fe3O4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth Texto completo
2022
Duan, Lunchao | Wang, Qianhui | Li, Jining | Wang, Fenghe | Yang, Hao | Guo, Binglin | Hashimoto, Yohey
In this study, the feasibility of using zero-valent iron (ZVI) and Fe₃O₄-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH⁻, PO₄³⁻, and SO₄²⁻) released from magnetic biochar. ZVI increased ryegrass production while Fe₃O₄-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.
Mostrar más [+] Menos [-]Adverse environmental effects of disposable face masks due to the excess usage Texto completo
2022
Hui Li, Alice Sim | Sathishkumar, Palanivel | Selahuddeen, Muhammad Luqman | Asyraf Wan Mahmood, Wan M. | Zainal Abidin, Mohamad Hamdi | Wahab, Roswanira Abdul | Mohamed Huri, Mohamad Afiq | Abdullah, Faizuan
The widespread use of disposable face masks as a preventative strategy to address transmission of the SARS-CoV-2 virus has been a key environmental concern since the pandemic began. This has led to an unprecedented new form of contamination from improperly disposed masks, which liberates significant amounts of heavy metals and toxic chemicals in addition to volatile organic compounds (VOCs). Therefore, this study monitored the liberation of heavy metals, VOCs, and microfibers from submerged disposable face masks at different pH (4, 7 and 12), to simulate distinct environmental conditions. Lead (3.238% ppb), cadmium (0.672 ppb) and chromium (0.786 ppb) were found in the analyzed leachates. By pyrolysis, 2,4-dimethylhept-1-ene and 4-methylheptane were identified as the VOCs produced by the samples. The chemically degraded morphology in the FESEM images provided further evidence that toxic heavy metals and volatile organic compounds had been leached from the submerged face masks, with greater degradation observed in samples submerged at pH 7 and higher. The results are seen to communicate the comparable danger of passively degrading disposable face masks and the release of micro- or nanofibers into the marine environment. The toxicity of certain heavy metals and chemicals released from discarded face masks warrants better, more robust manufacturing protocols and increased public awareness for responsible disposal to reduce the adverse impact on ecology and human health.
Mostrar más [+] Menos [-]Using soil amendments to reduce microcystin-LR bioaccumulation in lettuce Texto completo
2022
Cao, Qing | You, Bensheng | Liu, Weijing | Xie, Liqiang | Jiang, Weili | Zheng, Zhen
Contamination of microcystins (MCs) in plant-soil system have become a serious problem worldwide, however, it remains largely unknown how to alleviate the potential risk of consuming MCs-contaminated plants. In the present study, attapulgite, biochar and peat were used as soil amendments to reduce MCs bioaccumulation in lettuce. Lettuce irrigated with 10 μg L⁻¹ microcystin-LR (MC-LR) were growing in two different kinds of soils with or without soil amendments. Results showed that all soil amendments effectively reduced MC-LR bioaccumulation in lettuce roots and leaves. Compared with the control treatment, the MC-LR concentrations in leaves in treatments with attapulgite, biochar and peat decreased by 41.5%, 30.6%, 57.0% in soil A and 38.9%, 43.2%, 54.7% in soil B, respectively. Peat application was most effective in reducing MC-LR bioaccumulation. The decreased soil free MC-LR concentrations were positively correlated with MC-LR concentrations in lettuce, indicating decreased bioavailability of MC-LR by soil amendments. It is noteworthy that soil total MC-LR concentration in peat treatment significantly decreased by 33.3% and 29.4% in soil A and soil B, respectively, compared with the controls. According to the results from high-throughput sequencing, peat amendment increased the α-diversity of soil bacterial community and boosted the abundance of Sphingomonas and Methylobacillus (dozens of MC-degrading bacteria belong to these genera). This was in line with the results of soil total MC-LR concentration. It can be speculated that peat application directly and/or indirectly promoted microbial degradation of MC-LR in soils. This work proposed an effective way to alleviate the potential risks of MCs contamination in plant-soil system.
Mostrar más [+] Menos [-]Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? Texto completo
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
Mostrar más [+] Menos [-]Early pregnancy PM2.5 exposure and its inorganic constituents affect fetal growth by interrupting maternal thyroid function Texto completo
2022
Zhou, Yuhan | Zhu, Qingqing | Wang, Pengpeng | Li, Jialin | Luo, Ranran | Chao, Winston | Zhang, Liyi | Shi, Huijing | Zhang, Yunhui
Early pregnancy is crucial for fetal growth. Maternal thyroid hormone is critical for fetal growth and can be disturbed under exogenous exposure. However, it's uncertain whether exposure to PM₂.₅ and inorganic constituents during early pregnancy can affect TH and fetal growth. We focused on the associations of early-pregnancy PM₂.₅ and inorganic constituents with fetal growth and maternal THs. PM₂.₅ concentration was estimated using a satellite-based spatiotemporal model. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and humerus length (HL) were measured by ultrasonography at median 15.6, 22.2, and 33.1 gestational weeks. Levels of 28 PM₂.₅ constituents were measured in a sub-group of 329 pregnancies. Maternal serum free thyroxine (fT4), free triiodothyronine, and thyroid-stimulating hormone levels were measured at 14 weeks of gestation. Mixed-effect models and multiple linear regression were applied to evaluate the associations of PM₂.₅ and its constituents with fetal growth measures. Mediation analysis was used to examine the mediating role of the THs. Results showed that each 10 μg/m³ increase in PM₂.₅ was associated with 0.20 mm reductions in BPD (95%CI: 0.33, −0.01), 0.27 mm decreases in FL (95%CI: 0.40, −0.13), and 0.36 decreases in HL (95%CI: 0.49, −0.23). Per 10 μg/m³ increment in PM₂.₅ was correlated with 5.82% decreases in the fT4 level (95% CI: 8.61%, −2.96%). FT4 accounted for 14.3% of PM₂.₅ exposure-induced change in BPD at first follow-up. Al (β = −2.91, 95%CI: 5.17, −0.66), Si (β = −1.20, 95%CI: 2.22, −0.19), K (β = −3.09, 95%CI: 5.41, −0.77), Mn (β = −47.20, 95%CI: 83.68, −10.79) and Zn (β = −3.02, 95%CI: 5.55, −0.49) were associated with decreased fetal BPD, especially in first follow-up. Zn (β = −38.12%, 95% CI: 58.52%, −8.61%) was also associated with decreased fT4 levels. Overall, early pregnancy exposure to PM₂.₅ and its constituents was associated with fetal growth restriction and decreased maternal fT4 levels might mediate the effect of PM₂.₅.
Mostrar más [+] Menos [-]A lentic microcosm approach to determine the toxicity of DDT and deltamethrin on diatom communities Texto completo
2022
Kock, Anrich | Smit, Nico J. | Taylor, Jonathan C. | Wolmarans, Nico J. | Wepener, V.
Worldwide the use of pesticides has increased, especially in the industry and agriculture sector even though they contain highly toxic substances. The use of pesticides has various negative effects on the aquatic ecosystem and organisms within these ecosystems. The paper aimed to assess the effects of increased concentrations of malaria vector control insecticides (Dichlorodiphenyltrichloroethane (DDT) and Deltamethrin (DTM)) on the freshwater diatom community structure using a microcosm approach as well as determine whether a mixture (DDT 1:1 Deltamethrin) exposure will have a greater influence on the diatom community when compared to single exposures of these insecticides. Diatoms were exposed to a high and low concentration (based on LC50 data for freshwater Xenopus laevis from the USEPA Ecotox database) of DDT, DTM and a mixture in lentic microcosms over a total period of 28 days. Results indicated that irrespective of exposure concentrations, DDT, DTM and a mixture had negative effects on the diatom community including functionality and vitality as these insecticides induced changes to their chloroplasts. There was an increased percentage dead cells for all exposures compared to the control, with the insecticides having a phototoxic effect on the diatom community. Exposure to the selected insecticides caused a significant decrease in some diatom metrics indicating the negative effects these insecticides have on the diatom metrics. Therefore, diatoms may prove to be useful as bio-indicators in ecotoxicology studies when assessing the effects of any insecticide exposures.
Mostrar más [+] Menos [-]