Refinar búsqueda
Resultados 1201-1210 de 7,292
Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters Texto completo
2022
Erler, Silvio | Eckert, Jakob H. | Steinert, Michael | Alkassab, Abdulrahim T.
Pollinating bees are stressed by highly variable environmental conditions, malnutrition, parasites and pathogens, but may also by getting in contact with microorganisms or entomopathogenic nematodes that are used to control plant pests and diseases. While foraging for water, food, or nest material social as well as solitary bees have direct contact or even consume the plant protection product with its active substance (e.g., viruses, bacteria, fungi, etc.). Here, we summarize the results of cage, microcolony, observation hive assays, semi-field and field studies using full-size queen-right colonies. By now, some species and subspecies of the Western and Eastern honey bee (Apis mellifera, A. cerana), few species of bumble bees, very few stingless bee species and only a single species of leafcutter bees have been studied as non-target host organisms. Survival and reproduction are the major criteria that have been evaluated. Especially sublethal effects on the bees' physiology, immune response and metabolisms will be targets of future investigations. By studying infectivity and pathogenic mechanisms, individual strains of the microorganism and impact on different bee species are future challenges, especially under field conditions. Overall, it became evident that honey bees, bumble bees and few stingless bee species may not be suitable surrogate species to make general conclusions for biological mechanisms of bee-microorganism interactions of other social bee species. Solitary bees have been studied on leafcutter bees (Megachile rotundata) only, which shows that this huge group of bees (∼20,000 species worldwide) is right at the beginning to get an insight into the interaction of wild pollinators and microbial plant protection organisms.
Mostrar más [+] Menos [-]Use of poisoned baits against wildlife. A retrospective 17-year study in the natural environment of Extremadura (Spain) Texto completo
2022
Ibáñez-Pernía, Yolanda | Hernández-Moreno, David | Pérez-López, Marcos | Soler-Rodríguez, Francisco
This study reports the results obtained from toxicological analyses of different types of baits referred to the laboratory of the Toxicology Area (Faculty of Veterinary Medicine, Cáceres, Spain) over a 17-year period (2002–2018). These baits were suspicious materials found in the environment of the region of Extremadura (Western Spain), where such malpractices are a problem to be addressed, as wide livestock farming and hunting activities are combined with a significant wealth of wildlife (especially birds of prey). A total of 246 baits, including 32 commercial chemical products to be used in baits, were analysed. Samples from 183 cases were received and classified according to the material used for their preparation and the toxic substance found. Overall, the most common bait consisted of meat preparations (56.3% of cases) intended to eliminate predators considered ‘annoying’ for livestock and hunting practices, such as carnivores and scavengers. It should be noted that contact baits (as fenthion-impregnated perches) were also detected (7.6%). Regarding the substances detected, anticholinesterase compounds (organophosphates and carbamates) were the most commonly used substances for the preparation of baits (detected in 85.3% of positive baits). Moreover, 8% of the positive baits presented more than one toxic substance in their composition. Due to the types of toxic compounds and the methods used to prepare the baits, this study shows that the malicious use of highly toxic substances in the environment to kill wildlife is a common and current issue and poses a serious risk to different species.
Mostrar más [+] Menos [-]Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities Texto completo
2022
Cao, Ruiwen | Zhang, Yiling | Ju, Yuhao | Wang, Wei | Xi, Chenxiang | Liu, Wenlin | Liu, Kai
In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO₂ and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops under joint exposure to ocean acidification and Cu. The integrated biomarker response results suggested that scallops were more sensitive to Cu toxicity and/or ocean acidification than clams. The proteomic results suggested that the increased energy metabolism and suppressed protein turnover rates may contribute to a higher resistivity to ocean acidification in clams than scallops. Overall, this study provides molecular insights into the distinct sensitivities between two bivalve species from different habitats under exposure to ocean acidification and/or Cu. The findings emphasize the aggravating impact of ocean acidification on Cu toxicity in clams and scallops. The results show that ocean acidification and copper pollution may reduce the long-term viability of clams and scallops, and lead to the degradation of estuarine ecosystems.
Mostrar más [+] Menos [-]Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed Texto completo
2022
Slaby, Sylvain | Le Cor, François | Dufour, Vincent | Auger, Lucile | Pasquini, Laure | Cardoso, Olivier | Curtet, Laurence | Baudoin, Jean-Marc | Wiest, Laure | Vulliet, Emmanuelle | Feidt, Cyril | Dauchy, Xavier | Banas, Damien
More than 20 years after the Water Framework Directive was adopted, there are still major gaps in the sanitary status of small rivers and waterbodies at the head of basins. These small streams supply water to a large number of wetlands that support a rich biodiversity. Many of these waterbodies are fishponds whose production is destined for human consumption or for the restocking of other aquatic environments. However, these ecosystems are exposed to contaminants, including pesticides and their transformation products. This work aims to provide information on the distribution, diversity, and concentrations of agricultural contaminants in abiotic and biotic compartments from a fishpond located at the head of watersheds. A total of 20 pesticides and 20 transformation products were analyzed by HPLC-ESI-MS/MS in water and sediment sampled monthly throughout a fish production cycle, and in three fish species at the beginning and end of the cycle.The highest mean concentrations were found for metazachlor-OXA (519.48 ± 56.52 ng.L⁻¹) in water and benzamide (4.23 ± 0.17 ng g⁻¹ dry wt.) in sediment. Up to 20 contaminants were detected per water sample and 26 per sediment sample. The transformation products of atrazine (banned in Europe since 2003 but still widely used in other parts of the world), flufenacet, imidacloprid (banned in France since 2018), metazachlor, and metolachlor were more concentrated than their parent compounds. Fewer contaminants were detected in fish and principally prosulfocarb accumulated in organisms during the cycle.Our work brings innovative data on the contamination of small waterbodies located at the head of a basin. The transformation products with the highest frequency of occurrence and concentrations should be prioritized for further environmental monitoring studies, and specific toxicity thresholds should be defined. Few contaminants were found in fish, but the results challenge the widely use of prosulfocarb.
Mostrar más [+] Menos [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Texto completo
2022
González-Doncel, Miguel | García-Mauriño, José Enrique | Beltrán, Eulalia María | Fernández Torija, Carlos | Andreu-Sánchez, Oscar | Pablos, María Victoria
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
Mostrar más [+] Menos [-]Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment? Texto completo
2022
de Moraes Sá, João Carlos | Lal, R. | Briedis, Clever | de Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Burkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha⁻¹ in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha⁻¹ was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha⁻¹ with an environmental cost of USD 1968 ha⁻¹. The 0.59 Mg C ha⁻¹ yr⁻¹ sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha⁻¹ in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha⁻¹, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha⁻¹ yr⁻¹ was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
Mostrar más [+] Menos [-]Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma Texto completo
2022
Solé, Marta | De Vreese, Steffen | Fortuño, José-Manuel | van der Schaar, Mike | Sánchez, Antonio M. | André, Michel
The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 μPa² and 167 dB re 1 μPa², respectively). However, sound pressure levels's lower than 163 dB re 1 μPa² were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.
Mostrar más [+] Menos [-]Biological effects of the antihypertensive losartan under different ocean acidification scenarios Texto completo
2022
Pusceddu, F.H. | Guimarães, M.M. | Lopes, L.O. | Souza, L.S. | Cortez, F.S. | Pereira, C.D.S. | Choueri, R.B. | César, A.
Since the last decade, several studies have reported the presence and effects of pharmaceutical residues in the marine environment, especially those of the antihypertensive class, such as losartan. However, there is little knowledge about the physiological effects of losartan in marine invertebrates regarding its behavior under possible coastal ocean acidification scenarios. The objective of this study was to evaluate biological effects on marine organisms at different levels of the biological organization caused by the compound losartan in water and sediment under coastal ocean acidification scenarios. Water and sediment samples were collected at five sites around the Santos Submarine Sewage outfall (SSO) and two sites around the Guarujá Submarine Sewage Outfall (GSO). Losartan was found in concentrations ranging from <LOD to 7.63 ng/L in water and from <LOQ to 3.10 ng/g in sediments. Statistical analysis showed interactive effects pH and losartan on the toxicity results. The water toxicity test with Echinometra lucunter embryos/larvae showed LOECs 50–100 mg/L, with values decreasing as the pH decreased. In the sediment assays, LOEC value for sea urchin embryo-larval development was 1.0 μg/g for all tested pHs. Regarding the lysosomal membrane stability assays with adult bivalves, a LOEC of 3000 ng/L was found for Perna perna in water exposure (both at pH 8.0 and 7.6). Effects for Mytella guyanensis were observed at environmentally relevant concentrations in sediment (LOEC = 3 ng/g at pH 8.0 and 7.6). This study demonstrated that coastal ocean acidification by itself causes effects on marine invertebrates, but can also increase the negative effects of losartan in waterborne exposure. There is a need to deepen the studies on the ecotoxicity of pharmaceutical residues and acidification of the marine environment.
Mostrar más [+] Menos [-]“Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms Texto completo
2022
Martins, Roberto Borges | Figueiredo, Joana | Sushkova, Alesia | Wilhelm, Manon | Tedim, João | Loureiro, Susana
Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)₆]³⁻) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an eco-friendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)₆]³⁻ vs. Mg–Al LDH-[Fe(CN)₆]³⁻). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC₅₀ = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC₅₀ = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)₆]³⁻ were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors.
Mostrar más [+] Menos [-]Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations Texto completo
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O.
A total of 1345 specimens belonging to 58 different species of wild fish and seafood from the western Mediterranean Sea were analyzed to assess total mercury levels and to estimate which species meet the EU recommendations for human consumption (0.5 μg g⁻¹ ww) in all cases. All fish species were caught off the Mediterranean coasts and intended for human consumption. All specimens were collected from local markets located in Spain, Italy and France that sell fish caught by local fishermen (Eivissa, Menorca, Mallorca, Alacant, L'Ampolla, Ametlla de Mar, Marseille, Genoa, Civitavecchia, Alghero) at different time periods. Mercury concentrations were measured by thermal decomposition-gold amalgamator-atomic absorption spectrometry. Only thirteen species were found that did not exceed 0.5 μg g⁻¹ ww in any specimen analyzed. These safe species were sardines (Sardina pilchardus), anchovies (Engraulis encrasicolus), blue whiting (Micromesistius poutassou), picarel (Spicara smaris), blackspot seabream (Pagellus bogaraveo), gilthead seabream (Sparus aurata), pearly razorfish (Xyrichtys novacula), surmullet (Mullus surmuletus), painted comber (Serranus scriba), brown meagre (Sciaena umbra), salema (Sarpa salpa), common dolphinfish (Coryphaena hippurus) and squid (Loligo vulgaris). These species occupy different trophic levels, have different lengths and average weights, but show a low mercury concentration than others living in the same environments. Potential human consumption of these species as sole source of fish would imply estimated weekly intakes representing between 49% and 70% of the recommended provisional tolerable weekly intake of methylmercury in the worst case. Health authorities should pay specific attention to species that do not meet EU thresholds and make appropriate precautionary health recommendations, especially for pregnant women and children.
Mostrar más [+] Menos [-]