Refinar búsqueda
Resultados 1231-1240 de 6,548
Effects of a century of mining and industrial production on metal contamination of a model saline ecosystem, Great Salt Lake, Utah Texto completo
2020
Wurtsbaugh, Wayne A. | Leavitt, Peter R. | Moser, Katrina A.
Effects of mining and metals production have been reported in freshwater lake sediments from around the world but are rarely quantified in saline lake sediments, despite the importance of these lake ecosystems. Here we used dated sediment cores from Great Salt Lake, Utah, USA, a large saline lake adjacent to one of the world’s largest copper mines, to measure historical changes in the deposition of 22 metals. Metal concentrations were low prior to the onset of mining in the catchment in 1860 CE. Concentrations of copper, lead, zinc, cadmium, mercury, and other metals began increasing in the late 1800s, with peaks in the 1950s, concomitant with enhanced mining and smelting activities. Sedimentary metal concentrations in the 1950s were 20-40-fold above background levels for copper, lead, silver, and molybdenum. Concentrations of most metals in surficial sediments have decreased 2-5-fold, reflecting: 1) storage and mineralization of sedimenting materials in a deep brine layer, thereby reducing metal transport to the sediments; 2) improved pollution control technologies, and; 3) reduction in mining activity beginning in the 1970s and 1980s. Despite reductions, concentrations of many metals in surficial sediments remain above acceptable contamination thresholds for aquatic ecosystems with migratory birds, and consumption advisories for mercury have been placed on three waterfowl species. The research also highlights that metal deposition in saline lakes is complicated by effects of hypersaline brines and deep-water anoxia in regulating sediment redox and release of metals to surface waters. Given the importance of saline lakes to migratory birds, metals contamination from mining and metals production should be a focus of saline lake remediation.
Mostrar más [+] Menos [-]A two-year field study of using a new material for remediation of cadmium contaminated paddy soil Texto completo
2020
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Ji, Puhui
Cadmium (Cd) as a highly toxic heavy metal can cause seriously harmful to human health. Rice consumption is a major source of Cd intake by Chinese. Reduce the Cd accumulation by rice is the key for reducing Cd hazard. Therefore, fly ash (FA) was used as raw material in this study, after the process of simplifying hydrothermal synthesis the zeolite (ZE), which was named as low-temperature-alkali roasting, a new intermediate materials (IP) was got. And the three mentioned materials (FA, IP and ZE) were used for a two-year field experiment. The study demonstrated that, application of IP and ZE could promote rice growth, as well as increase soil pH, and improve available Si content. The rice production increased by 36.1% and 29.8% in 2017 by IP and ZE applied, enhanced 35.9% and 31.7% in 2018, respectively. Meanwhile, the bio-available Cd decreased by 26.9% and 26% in 2017, reduced by 22.9% and 28% in 2018, respectively. Generally, the passivators could promote the conversion of acid-exchangeable fraction Cd to reducible fraction Cd. It can be conclude that, IP and ZE have good remediation effect on contaminated soil, and alleviated effects on Cd accumulation by rice, even though no significant difference was detected between IP and ZE. The synthesis process of IP of is simpler than ZE. The impact of IP on contaminated soil needs further exploration.
Mostrar más [+] Menos [-]3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages Texto completo
2020
Liu, Ning | Yang, Ying | Chen, Jingqing | Jia, Hai | Zhang, Yunchang | Jiang, Da | Wu, Guoyao | Wu, Zhenlong
3-Acetyldeoxynivalenol (3-Ac-DON), the acetylated derivative of deoxynivalenol (DON), has been reported to be coexisted with DON in various cereal grains. Ingestion of grain-based food products contaminated by 3-Ac-DON might exert deleterious effects on the health of both humans and animals. However, the biological toxicity of 3-Ac-DON on macrophages and the underlying mechanisms remain largely unknown. In the present study, we showed that RAW 264.7 macrophages treated with 0.75 or 1.50 μg/mL of 3-Ac-DON resulted in DNA damage and the related cell cycle arrest at G1 phase and cell death, activation of the ribotoxic stress and the endoplasmic reticulum (ER) stress responses. The 3-Ac-DON-induced cell death was accompanied by a protective autophagy, because gene silencing of Atg5 using the small interfering RNA enhanced cell death. Results of further experiments revealed a role for lysosomal membrane permeabilization in the 3-Ac-DON triggered inhibition of autophagic flux. Additional work also showed that increased lysosomal biogenesis and leakage of cathepsin B (CTSB) from lysosomes to cytosol was critical for the 3-Ac-DON-induced cell death. Importantly, 3-Ac-DON-induced DNA damage and cell death were rescued by CA-074-me, a CTSB inhibitor. Collectively, these results indicated a critical role of lysosomal membrane permeabilization in the 3-Ac-DON-induced apoptosis of RAW 264.7 macrophages.
Mostrar más [+] Menos [-]Elevated mercury concentrations in biota despite reduced sediment concentrations in a contaminated coastal area, Harboøre Tange, Denmark Texto completo
2020
Bjerregaard, Poul | Schmidt, Torben Grau | Mose, Maria Pedersen
Metals sequestered in coastal sediments are normally considered to be stable, but this investigation shows – somewhat surprisingly – that mercury concentrations in a previously contaminated area, Harboøre Tange, Denmark, have decreased since the 1980s. Mercury concentrations were determined in sediment and benthic biota and present values were compared to values in the 1980s and values from areas without known; history of mercury contamination. Concentrations in both the upper 20 cm of the sediments and; biota are considerably lower now compared to latest monitoring (1980s). Sediment.concentrations at most locations have decreased from the 100–300 ng Hg g⁻¹ dry weight (dw) level to levels below the Background Concentration (BC) of 50 ng Hg g⁻¹ dw defined by Oslo-Paris Convention for the Protection of the Marine Environment of the North-East Atlantic; some stations are at the 2–10 ng Hg g⁻¹ dw level characteristic of Danish coastal sediments with no known history of mercury contamination. Concentrations of mercury in the benthic biota along Harboøre Tange have also decreased since the 1980s but despite the lowered mercury concentrations in the sediments, concentrations in most samples of benthic invertebrate fauna still exceed those in uncontaminated coastal areas and also the Environmental Quality Standard (EQS) of 20 ng Hg g⁻¹ wet weight (≈100 ng Hg g⁻¹ dry weight) defined by the European Union’s Water Framework Directive. Concentration ranges in selected organisms are: (Harboøre Tange l980s/Harboøre Tange now/uncontaminated areas - given in ng Hg g⁻¹ dw): Periwinkles Littorina littorea 9000/150–450/55-77, blue mussels Mytilus edulis up to 9000/300–500/40–170, cockles Cerastoderma edule up to 8000/400–1200/200, brown shrimp Crangon crangon 700–2200/150-450/47, eelgrass Zostera marina up to 330/25–70/12. The present results - together with a literature review - show that a simple and straight forward relationship between the concentrations of mercury in sediment and benthic organisms does not necessarily exist.
Mostrar más [+] Menos [-]Characteristics of spatial and seasonal bacterial community structures in a river under anthropogenic disturbances Texto completo
2020
Ouyang, Liao | Chen, Huirong | Liu, Xinyue | Wong, Ming Hung | Xu, Fangfang | Yang, Xuewei | Xu, Wang | Zeng, Qinghuai | Wang, Weimin | Li, Shuangfei
In this study, the seasonal characteristics of microbial community compositions at different sites in a river under anthropogenic disturbances (Maozhou River) were analyzed using Illumina HiSeq sequencing. Taxonomic analysis revealed that Proteobacteria was the most abundant phylum in all sites, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Firmicutes. The variations of the community diversities and compositions between the seasons were not significant. However, significant differences between sites as well as water and sediment samples were observed. These results indicated that sites under different levels of anthropogenic disturbances have selected distinct bacterial communities. pH, dissolved oxygen (DO), concentrations of total nitrogen (TN) and heavy metals were the main factors that influence the diversity and the composition of bacterial community. Specifically, the relative abundance of Proteobacteria was negatively correlated with pH and DO and positively correlated with TN, while Actinobacteria and Verrucomicrobia showed the opposite pattern. Moreover, positive correlations between the relative abundances of Firmicutes and Bacteroidetes and the concentration of heavy metals were also found. Results of functional prediction analysis showed no significant differences of the carbon, nitrogen and phosphorus metabolism across the sites and seasons. Potential pathogens such as Vibrio, Arcobacter, Acinetobacter and Pseudomonas were found in these samples, which may pose potential risks for environment and human health. This study reveals the effect of anthropogenic activities on the riverine bacterial community compositions and provides new insights into the relationships between the environmental factors and the bacterial community distributions in a freshwater ecosystem under anthropogenic disturbances.
Mostrar más [+] Menos [-]Determinants of personal exposure to fine particulate matter in the retired adults – Results of a panel study in two megacities, China Texto completo
2020
Li, Na | Xu, Chunyu | Liu, Zhe | Li, Ning | Chartier, Ryan | Chang, Junrui | Wang, Qin | Wu, Yaxi | Li, Yunpu | Xu, Dongqun
This study aimed to investigate the relationship between outdoor, indoor, and personal PM₂.₅ exposure in the retired adults and explore the effects of potential determinants in two Chinese megacities. A longitudinal panel study was conducted in Nanjing (NJ) and Beijing (BJ), China, and thirty-three retired non-smoking adults aged 43–86 years were recruited in each city. Repeated measurements of outdoor-indoor-personal PM₂.₅ concentrations were measured for five consecutive 24-h periods during both heating and non-heating seasons using real-time and gravimetric methods. Time-activity and household characteristics were recorded. Mixed-effects models were applied to analyze the determinants of personal PM₂.₅ exposure. In total, 558 complete sets of collocated 24-h outdoor-indoor-personal PM₂.₅ concentrations were collected. The median 24-h personal PM₂.₅ exposure concentrations ranged from 43 to 79 μg/m³ across cities and seasons, which were significantly greater than their corresponding indoor levels (ranging from 36 to 68 μg/m³, p < 0.001), but significantly lower than outdoor levels (ranging from 43 to 95 μg/m³, p < 0.001). Indoor and outdoor PM₂.₅ concentrations were the strongest determinants of personal exposures in both cities and seasons, with RM² ranging from 0.814 to 0.915 for indoor and from 0.698 to 0.844 for outdoor PM₂.₅ concentrations, respectively. The personal-outdoor regression slopes varied widely among seasons, with a pronounced effect in BJ (NHS: 0.618 ± 0.042; HS: 0.834 ± 0.023). Ventilation status, indoor PM₂.₅ sources, personal characteristics, and meteorological factors, were also found to influence personal exposure levels. The city and season-specific models developed here are able to account for 89%–93% of the variance in personal PM₂.₅ exposure. A LOOCV analysis showed an R² (RMSE) of 0.80–0.90 (0.21–0.36), while a 10-fold CV analysis demonstrated a R² (RMSE) of 0.83–0.90 (0.20–0.35). By incorporating potentially significant determinants of personal exposure, this modeling approach can improve the accuracy of personal PM₂.₅ exposure assessment in epidemiologic studies.
Mostrar más [+] Menos [-]Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir Texto completo
2020
Amorim, Cihelio A. | Moura, Ariadne N.
Biomanipulation is an efficient tool to control eutrophication and cyanobacterial blooms in temperate lakes. However, the effects of this technique are still unclear for tropical ecosystems. Herein, we evaluated the effects of the biomanipulation on cyanobacterial biomass in a tropical shallow reservoir in Northeast Brazil. A mesocosm experiment was conducted in Tapacurá reservoir (Pernambuco) with eight treatments, in which we factorially manipulated the presence of submerged macrophytes (Ceratophyllum demersum), large herbivorous zooplankton (Sarsilatona serricauda), and nutrients (0.4 mg L⁻¹ of nitrogen and 0.5 mg L⁻¹ of phosphorus). On the first, fifth, and tenth days, we analyzed the total biomass of cyanobacteria, and the morphotypes coccoid, heterocyted filamentous, and non-heterocyted filamentous cyanobacteria; these components were compared through a three-way ANOVA. The bloom was composed mainly of five Microcystis morphospecies (coccoids) and Raphidiopsis raciborskii (heterocyted filaments). On the fifth day of the experiment, the combined addition of macrophytes and zooplankton was more efficient at controlling cyanobacterial biomass. On the tenth day, all macrophyte treatments showed significant cyanobacterial biomass reduction, decreasing up to 84.8%. On the other hand, nutrients and zooplankton, both isolated and combined, had no significant effect. Macrophytes also reduced the biomass of coccoids, heterocyted filaments, and non-heterocyted filaments when analyzed separately on the tenth day. Ceratophyllum demersum was more efficient at controlling the bloom than the addition of large herbivorous zooplankton, which could be related to allelopathy since cyanobacterial biomass was also reduced when nutrients were added. The addition of submerged macrophytes with allelopathic potential, associated with the increase of large herbivorous zooplankton, proved to be an efficient technique for controlling tropical cyanobacterial blooms.
Mostrar más [+] Menos [-]microRNA expression profiles and personal monitoring of exposure to particulate matter Texto completo
2020
Mancini, Francesca Romana | Laine, Jessica E. | Tarallo, Sonia | Vlaanderen, Jelle | Vermeulen, Roel | van Nunen, Erik | Hoek, Gerard | Probst-Hensch, Nicole | Imboden, Medea | Jeong, Ayoung | Gulliver, John | Chadeau-Hyam, Marc | Nieuwenhuijsen, Mark | de Kok, Theo M. | Piepers, Jolanda | Krauskopf, Julian | Kleinjans, Jos C.S. | Vineis, Paolo | Naccarati, Alessio
An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants. In the present study, we investigated the relationship between particulate matter (PM) smaller than 2.5 μm (PM₂.₅), PM₂.₅ absorbance (as a proxy of black carbon and soot), and ultrafine-particles (UFP, smaller than 0.1 μm), measured in healthy volunteers by 24 h personal monitoring (PEM) sessions and global expression levels of peripheral blood miRNAs. The PEM sessions were conducted in four European countries, namely Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht). miRNAs expression levels were analysed using microarray technology on blood samples from 143 participants. Seven miRNAs, hsa-miR-24-3p, hsa-miR-4454, hsa-miR-4763-3p, hsa-miR-425-5p, hsa-let-7d-5p, hsa-miR-502-5p, and hsa-miR-505-3p were significantly (FDR corrected) expressed in association with PM₂.₅ personal exposure, while no significant association was found between miRNA expression and the other pollutants. The results obtained from this investigation suggest that personal exposure to PM₂.₅ is associated with miRNA expression levels, showing the potential for these circulating miRNAs as novel biomarkers for air pollution health risk assessment.
Mostrar más [+] Menos [-]A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2 Texto completo
2020
Laskar, Amzad H. | Maurya, Abhayanand S. | Singh, Vishvendra | Gurjar, Bhola R. | Liang, Mao-Chang
Air quality in the megacity Delhi is affected not only by local emissions but also by pollutants from crop residue burning in the surrounding areas of the city, particularly the rice straw burning in the post monsoon season. As a major burning product, gaseous CO₂, which is rather inert in the polluted atmosphere, provides an alternative solution to characterize the impact of biomass burning from a new perspective that other common tracers such as particulate matters are limited because of their physical and chemical reactiveness. Here, we report conventional ([CO₂], δ¹³C, and δ¹⁸O) and unconventional (Δ¹⁷O) isotope data for CO₂ collected at Connaught Place (CP), a core area in the megacity Delhi, and two surrounding remote regions during a field campaign in October 18–20, 2017. We also measured the isotopic ratios near a rice straw burning site in Taiwan to constrain their end member isotopic compositions. Rice straw burning produces CO₂ with δ¹³C, δ¹⁸O, and Δ¹⁷O values of −29.02 ± 0.65, 19.63 ± 1.16, and 0.05 ± 0.02‰, respectively. The first two isotopic tracers are less distinguishable from those emitted by fossil fuel combustion but the last one is significantly different. We then utilize these end member isotopic ratios, with emphasis on Δ¹⁷O for the reason given above, for partitioning sources that affect the CO₂ level in Delhi. Anthropogenic fraction of CO₂ at CP ranges from 4 to 40%. Further analysis done by employing a three-component (background, rice straw burning, and fuel combustion) mixing model with constraints from the Δ¹⁷O values yields that rice straw burning contributes as much as ∼70% of the total anthropogenic CO₂, which is more than double of the fossil fuel contribution (∼30%), during the study days.
Mostrar más [+] Menos [-]In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover Texto completo
2020
Qin, Linbo | Huang, Xinming | Xue, Qiang | Liu, Lei | Wan, Yong
MSW landfill releases a lot of harmful pollutants such as H₂S, NH₃, and VOCs. In this study, two laboratory-scale biocovers such as biochar (BC) derived from agricultural & forestry wastes (AFW) pyrolysis, and sludge modified the biochar (SBC) were designed and used to remove the harmful pollutants. In order to understand in-situ biodegradation mechanism of the harmful pollutants by the SBC, the removal performances of the harmful pollutants together with the bacterial community in the BC and SBC were investigated in simulated landfill systems for 60 days comparing with the contrast experiment of a landfill cover soil (LCS). Meanwhile, the adsorption capacities of representative harmful pollutants (hydrogen sulfide, toluene, acetone and chlorobenzene) in the LCS, BC, and SBC were also tested in a fixed bed reactor. The removal efficiencies of the harmful pollutants by the SBC ranged from 95.43% to 100.00%, which was much higher than that of the LCS. The adsorption capacities of the harmful pollutants in the SBC were 4 times higher than that of the LCS since the SBC exhibited higher BET surface and N-containing functional groups. Meanwhile, the biodegradation rates of the harmful pollutants in the SBC were also much higher than that of the LCS since the populations of the bacterial community in the SBC were more abundant due to its facilitating the growth and activity of microorganisms in the porous structure of the SBC. In addition, a synergistic combination of adsorption and biodegradation in the SBC that enhanced the reproduction rate of microorganisms by consuming the absorbed-pollutants as carbon sources, which also contributed to enhance the biodegradation rates of the harmful pollutants.
Mostrar más [+] Menos [-]