Refinar búsqueda
Resultados 1261-1270 de 4,936
Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea Texto completo
2019
Zafeiraki, Effrosyni | Gebbink, Wouter A. | van Leeuwen, Stefan P.J. | Dassenakis, Emmanouil | Megalofonou, Persefoni
Persistent organic pollutants (POPs), including Perfluoroalkyl substances (PFASs), enter into the marine ecosystem, raising questions on possible adverse effects caused to the health of marine organisms and especially of top predators. Thus, there is an urge to assess the occurrence and the tissue distribution of PFASs in apex predators. To this end, the current study examines concentrations and distribution of 15 PFASs among 85 samples of different tissues from 9 shark and ray species collected in Greece. The results showed a similar PFAS pattern among the different tissues, with long carbon chain PFASs being the most frequently detected compounds. PFTrDA was the most predominant compound in terms of concentration and frequency of detection, followed by PFUnDA and PFOS. PFTrDA concentrations ranged between < LOQ and 27.1 ng/g ww, while PFUnDA and PFOS levels ranged from <LOQ to 16.0 and < LOQ to 21.6 ng/g ww, respectively. Regarding their frequency of detection, PFTrDA and PFUnDA were detected in 98% and 91% of the samples, respectively, while PFOS was detected in 79%. ΣPFAS concentrations in each analysed tissue ranged from 0.3 to 85 ng/g ww, with the latter being detected in the liver of angular roughshark (Oxynotus centrina). On average, PFASs were found to be accumulated in tissues in the following order: gonads > heart > liver ≈ gills > muscle. Relative contribution (%) of individual compounds to ΣPFAS concentration varied among the different shark tissues, and also among the different shark species. No correlation between PFASs levels in tissues and sharks’ gender, length and geographical origin was observed.
Mostrar más [+] Menos [-]Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations Texto completo
2019
Xue, Shengyang | Wu, Chunzheng | Pu, Shengyan | Hou, Yaqi | Tong, Tian | Yang, Guang | Qin, Zhaojun | Wang, Zhiming | Bao, Jiming
Photocatalytic degradation is an attractive strategy to purify waste water contaminated by macromolecular organics. Compared with the single-component photocatalysts, heterostructures of different semiconductors have been widely used to improve the photocatalytic performance. In this work, we fabricate a hetero-structured photocatalyst consisting of two-dimensional graphitic carbon nitride (g-C3N4) nanosheets and commercial MoO3 microparticles through a simple mixing and annealing process. The photocatalytic performance was evaluated in various dye degradation reactions, especially Rhodamine (RhB) degradation. The MoO3/g-C3N4 composite shown a significant improvement compared with individual MoO3 or g-C3N4 as well as their physical mixture. By applying electron spin resonance (ESR) spin-trap spectra, radical scavenge experiments and electrochemical analysis, we find that a direct Z-scheme charge transfer between MoO3 and g-C3N4 not only causes an accumulation of electrons in g-C3N4 and holes in MoO3, but also boosts the formation of superoxide radical and hydroxyl radical. The superoxide radical and hole dominate the photocatalytic degradation, while the hydroxyl radical plays a negligible role and its production can be suppressed by lowering the pH value.
Mostrar más [+] Menos [-]Icariin attenuate microcystin-LR-induced gap junction injury in Sertoli cells through suppression of Akt pathways Texto completo
2019
Zhou, Yuan | Chen, Yu | Hu, Xueqin | Guo, Jun | Shi, Hao | Yu, Guang | Tang, Zongxiang
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorder. However, the underlying mechanism are not yet entirely elucidated. In this study, we aimed to investigated the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both in vivo and in vitro experiments revealed that MC-LR caused disruption of BTB and gap junctions between Sertoli cells respectively, which was paralleled by the alteration of connexin43 (Cx43). Our data demonstrated that MC-LR decreased gap junction intercellular communication (GJIC) and impaired Cx43 expression by activating the phosphatidylinositol 3-kinase/Akt cascades. In addition, a possible protective effect of Icariin (ICA), a flavonoid isolated from Chinese medicinal herb, against MC-LR toxicity was investigated. The ICA prevented the degradation of GJIC and impairment of Cx43 induced by MC-LR via suppressing the Akt pathway. Together, our results confirmed that the expression of Cx43 induced by MC-LR was regulated in vivo and in vitro, which was involved in the destruction of BTB. Additionally, ICA seems to be able to mitigate the MC-LR toxic effects.
Mostrar más [+] Menos [-]Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas Texto completo
2019
Liu, Jinxin | Zhao, Zhe | Avillan, Johannetsy J. | Call, Douglas R. | Davis, Margaret | Sischo, William M. | Zhang, Anyun
Dairy cattle of different ages experience different living conditions and varied frequency of antibiotic administration that likely influence the distribution of microbiome and resistome in ways that reflect different risks of microbial transmission. To assess the degree of variance in these distributions, fecal and soil samples were collected from six distinct housing areas on commercial dairy farms (n = 7) in Washington State. 16S rRNA gene sequencing indicated that the microbiota differed between different on-farm locations in feces and soil, and in both cases, the microbiota of dairy calves was often distinct from others (P < 0.05). Thirty-two specific antibiotic resistance genes (ARGs) were widely distributed on dairies, of which several clinically relevant ARGs (including cfr, cfrB, and optrA) were identified for the first time at U.S. dairies. Overall, ARGs were observed more frequently in feces and soil from dairy calves and heifers than from hospital, fresh, lactation and dry pens. Droplet-digital PCR demonstrated that the absolute abundance of floR varied greatly across housing areas and this gene was enriched the most in calves and heifers. Furthermore, in an extended analysis with 14 dairies, environmental soils in calf pens had the most antibiotic-resistant Escherichia coli followed by heifer and hospital pens. All soil E. coli isolates (n = 1,905) are resistant to at least 4 different antibiotics, and the PFGE analysis indicated that florfenicol-resistant E. coli is probably shared across geographically-separated farms. This study identified a discrete but predictable distribution of antibiotic resistance genes and organisms, which is important for designing mitigation for higher risk areas on dairy farms.
Mostrar más [+] Menos [-]Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio) Texto completo
2019
Li, Shuying | Sun, Qianqian | Wu, Qiong | Gui, Wenjun | Zhu, Guonian | Schlenk, Daniel
Tebuconazole is a widely used fungicide that has been detected in water ecosystems, of which the concentrations may affect the endocrine function of aquatic organisms. At present study, tissue-specific bioaccumulation of tebuconazole was found in ovary of adult zebrafish, indicating a potential risk of endocrine disruption. In order to evaluate the potential endocrine disrupting effects, three life stages (2 hpf (hours post-fertilization) −60 dpf (days post-fertilization), Stage I; 60–120 dpf, Stage II; 180–208 dpf, Stage III) of zebrafish (Danio rerio) were chronically exposed to tebuconazole at the concentrations ranging from 0.05 mg/L to 1.84 mg/L. Result showed that exposed to tebuconazole could lead to a male-biased sex differentiation in juvenile zebrafish and significant decrease of the percentage of germ cells in sexually-mature zebrafish. Egg production was significantly inhibited by 57.8% and 19.2% after Stage II- and Stage III-exposures, respectively. The contents of 17β-estradiol in gonad decreased by 63.5% when exposed to 0.20 mg/L tebuconazole at Stage II and by 49.5% after exposed to 0.18 mg/L tebuconazole at Stage III, respectively. For all stages exposure, reductions in 17β-estradiol/testosterone ratio were observed, indicating an imbalance in steroids synthesis. Additionally, tebuconazole reduced the expression of cyp19a, which was consistent with the decrease of E2 level. In overall, the present findings indicated that, playing as an anti-estrogen-like chemical, tebuconazole inhibited the expression of Cyp19, thereby impairing steroid hormones biosynthesis, leading to a diminished fecundity of zebrafish.
Mostrar más [+] Menos [-]An immission perspective of emerging micropollutant pressure in Luxembourgish surface waters: A simple evaluation scheme for wastewater impact assessment Texto completo
2019
Gallé, Tom | Pittois, Denis | Bayerle, Michael | Braun, Christian
While wastewater treatment plants have been identified as the most prominent source of emerging micropollutants in surface waters, prediction of their ambient concentrations remains a challenge. This is due to the variability of loads entering individual treatment plants and of the elimination capacity by the latter as well as potential attenuation in the river network. Although geospatially detailed models exist, they suffer from the same data input uncertainties. Here, we investigated the concentration profiles of 20 emerging pollutants in different river stretches in Luxembourg with variable sanitary pressures. Using carbamazepine as a recalcitrant wastewater indicator, the correlation of the compounds to the latter revealed source and fate variability as well as specific emitters. Relating carbamazepine to sanitary pressure, expressed as the sum of population equivalents in a catchment divided by its surface [PE ha⁻¹] allowed predicting the impact of emerging pollutants on the entire river network. The limited variability of the pollutant profiles allowed for prioritization of impacted stretches depending on the different sanitary pressures at risk quotient exceedance. The main drivers of impact were triclosan, diclofenac, clarithromycine and diuron.
Mostrar más [+] Menos [-]Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp Texto completo
2019
Ma, Junguo | Zhu, Jingyi | Wang, Wanying | Ruan, Panpan | Rajeshkumar, Sivakumar | Li, Xiaoyu
Glyphosate (GLY)-based herbicide, one of the most widely used herbicides, might cause a series of environmental problems and pose a toxicological risk to aquatic organisms. However, data on the potential hazard and toxicity mechanism of GLY to fish gills are relatively scarce. In this study, a subacute toxicity test of common carp (Cyprinus carpio L.) treated with commercial GLY at 52.08 and 104.15 mg L−1 for 7 d was conducted. The results revealed that GLY exposure significantly inhibited Na+/K+-ATPase and increased AST and ALT activities in the fish gills. The biochemical assays results revealed that GLY treatment remarkably altered the transcriptional levels of HSP70 and HSP90; inhibited the activities of SOD, CAT, GPx, GR, and T-AOC; reduced the contents of GSH, but remarkably promoted MDA and PC contents, suggesting that GLY exposure induced oxidative stress and lipids and proteins damage in the carp gills. Further research revealed that GLY exposure also promoted expression of NF-κB, iNOS, IL-1β, IL-6, IL-8, and TNF-α; altered the levels of IL-10 and TGF-β, indicating that GLY exposure induced inflammatory response in the fish gills. Additionally, we found that GLY exposure activated apaf-1 and bax and inhibited bcl-2, induced caspase-9 and caspase-3 expression and caused remarkable histological damage in the fish gills. These results may further enriches the toxicity mechanistic theory of GLY to fish gills, which may be useful for the risk assessment of GLY and aquatic organism protection.
Mostrar más [+] Menos [-]Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells Texto completo
2019
Ren, Lihua | Liu, Jianhui | Zhang, Jin | Wang, Ji | Wei, Jialiu | Li, Yanbo | Guo, Caixia | Sun, Zhiwei | Zhou, Xianqing
Researches had shown that silica nanoparticles (SiNPs) could reduce the quantity and quality of sperms. However, chronic effects of SiNPs have not been well addressed. In this study, mice spermatocyte cells (GC-2spd cells) were continuously exposed to SiNPs (5 μg/mL) for 30 passages and then the changes of microRNA (miRNA) profile and mRNA profile were detected. The function of miRNAs was verified by inhibitors to explore the regulation role of miRNAs in reproductive toxicity induced by SiNPs. The results showed that SiNPs induced cytotoxicity, and activated autophagy in GC-2spd cells. SiNPs led to a total of 1604 mRNAs (697 up-regulated and 907 down-regulated) and 15 miRNAs (6 up-regulated such as miRNA-138 and miRNA-494 and 9 down-regulated) with different expression in GC-2spd cells. The combined miRNA profile and mRNA profile showed that 415 mRNAs with different expression in 5 μg/mL SiNPs group were regulated by miRNA. Furthermore, our study demonstrated that SiNPs decreased the expressions of AKT mRNAs. Moreover, SiNPs had an activation effect on the AMPK/TSC/mTOR pathway. However, inhibitor of miRNA-494 could attenuate the expression levels of AMPK, TSC, LC3Ⅱ and alleviate the decreased of AKT, mTOR, p-mTOR induced by SiNPs. The above results suggested that the low-dose SiNPs exposure could promote autophagy by miRNA-494 targeting AKT, thereby activating AMPK/TSC/mTOR pathway in GC-2spd cells. MiRNA-494 is an important regulator of autophagy by targeting AKT, which provides new evidence for the male reproductive toxicity mechanism of SiNPs.
Mostrar más [+] Menos [-]Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa Texto completo
2019
Gao, Jing | Wang, Fang | Wang, Peng | Jiang, Wenqi | Zhang, Zhenhua | Liu, Donghui | Zhou, Zhiqiang
Insecticide ethiprole, the alternative of fipronil which has been restricted in many countries, may contaminant water bodies through surface runoff after agricultural application, however, the aquatic toxicity and environmental behavior of ethiprole is still unknown. In this study, five metabolites of ethiprole (ethiprole sulfone, ethiprole sulfide, ethiprole amide, desethylsulfinyl ethiprole and ethiprole sulfone amide) were synthesized and their toxic effects on photosynthetic pigment and antioxidase in aquatic plant Chlorella pyrenoidosa (C. pyrenoidosa) were evaluated on an enantiomeric level. Besides, the accumulation and metabolism of rac-ethiprole and its enantiomers in algae suspension and algae were studied. Ethiprole sulfide was found to be more toxic than ethiprole, with the 96h EC₅₀ value seven times lower than ethiprole. Enantioselective toxicity was observed with R-ethiprole more toxic than S-ethiprole. The contents of chlorophyll were significantly reduced by all the chemicals at higher concentrations, and the levels of protein, malondialdehyde (MDA) and the activity of antioxidant defense enzymes were dose-dependent. The half-life of rac-ethiprole in algae suspension was 13.6 days and ethiprole amide was the major metabolite. However, ethiprole sulfide was the main metabolite in algae, suggesting different metabolic pathways in algae suspension and algae. Enantioselective metabolism in algae suspension was found with S-ethiprole metabolized faster than R-ethiprole. The preferentially accumulated and metabolized of R-ethiprole in algae was observed and C. pyrenoidosa had limited capacity to convert one enantiomer into the other. These findings indicated the toxicity of ethiprole to C. pyrenoidosa is lower than fipronil. The individual enantiomers of chiral pollutants and their metabolites should be considered in risk assessments.
Mostrar más [+] Menos [-]Two decades of monitoring in marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean Texto completo
2019
Domènech, F. | Aznar, F.J. | Raga, J.A. | Tomas, J.
Anthropogenic marine debris is one of the major worldwide threats to marine ecosystems. The EU Marine Strategy Framework Directive (MSFD) has established a protocol for data collection on marine debris from the gut contents of the loggerhead sea turtle (Caretta caretta), and for determining assessment values of plastics for Good Environmental Status (GES). GES values are calculated as percent turtles having more than average plastic weight per turtle. In the present study, we quantify marine debris ingestion in 155 loggerhead sea turtles collected in the period 1995–2016 in waters of western Mediterranean (North-east Spain). The study aims (1) to update and standardize debris ingestion data available from this area, (2) to analyse this issue over two decades using Zero-altered (hurdle) models and (3) to provide new data to compare the only GES value available (off Italian waters). The composition of marine debris (occurrence and amounts of different categories) was similar to that found in other studies for the western Mediterranean and their amounts seem not to be an important threat to turtle survival in the region. Model results suggest that, in the study area, (a) period of stranding or capture, (b) turtle size and (c) latitude are significant predictors of anthropogenic debris ingestion (occurrence and amount) in turtles. The GES value for late juvenile turtles (CCL>40 cm) has decreased in the last ten years in the study area, and this is very similar to that obtained in Italian waters. We also provide a GES value for early juvenile turtles (CCL≤40 cm) for the first time. Recommendations arising from this study include ensuring use of (1) the standardized protocol proposed by the MSFD for assessing marine debris ingestion by loggerhead sea turtles and (2) the ecology of the turtles (neritic vs oceanic), rather than their size, to obtain GES values.
Mostrar más [+] Menos [-]