Refinar búsqueda
Resultados 1371-1380 de 1,539
Geographical distribution of non-PBDE-brominated flame retardants in mussels from Asian coastal waters
2012
Isobe, Tomohiko | Ogawa, Shohei P. | Ramu, Karri | Sudaryanto, Agus | Tanabe, Shinsuke
Hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) used as alternatives for polybrominated diphenyl ethers (PBDEs) are also persistent in the environment as PBDEs. Limited information on these non-PBDE brominated flame retardants (BFRs) is available; in particular, there are only few publications on environmental pollution by these contaminants in the coastal waters of Asia. In this regard, we investigated the contamination status of HBCDs, BTBPE, and DBDPE in the coastal waters of Asia using mussels as a bioindicator. Concentrations of HBCDs, BTBPE, and DBDPE were determined in green (Perna viridis) and blue mussels (Mytilus edulis) collected from the coastal areas in Cambodia, China (mainland), SAR China (Hong Kong), India, Indonesia, Japan, Malaysia, the Philippines, and Vietnam on 2003–2008. BTBPE and DBDPE were analyzed using GC-MS, whereas HBCDs were determined by LC-MS/MS. HBCDs, BTBPE, and DBDPE were found in mussels at levels ranging from <0.01 to 1,400, <0.1 to 13, and <0.3 to 22 ng/g lipid wt, respectively. Among the three HBCD diastereoisomers, α-HBCD was the dominant isomer followed by γ- and β-HBCDs. Concentrations of HBCDs and DBDPE in mussels from Japan and Korea were higher compared to those from the other Asian countries, indicating extensive usage of these non-PBDE BFRs in Japan and Korea. Higher levels of HBCDs and DBDPE than PBDEs were detected in some mussel samples from Japan. The results suggest that environmental pollution by non-PBDE BFRs, especially HBCDs in Japan, is ubiquitous. This study provides baseline information on the contamination status of these non-PBDE BFRs in the coastal waters of Asia.
Mostrar más [+] Menos [-]Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments
2012
Schaller, Jörg | Machill, Susanne
Plant litter and organic sediments are a main sink for metals and metalloids in aquatic ecosystems. The effect of invertebrate shredder (a key species in litter decay) on metal/metalloid fixation by organic matter is described only under alkaline water conditions whereas for slightly acidic waters nothing can be found. Furthermore, less is known about the effect of invertebrate shredders on the quality of dissolved organic carbon (DOC) and nitrogen (DON) released during litter decay. We conducted an experiment to investigate the impact of invertebrate shredder (Gammarus pulex) on metal/metalloid fixation/remobilization and on the quality of DOC/DON released under slightly acidic water conditions. During decomposition of leaf litter, invertebrate shredder facilitated significantly the emergence of smaller particle sizes of organic matter. The capacity of metal fixation was significantly higher in smaller particles (POM 2,000–63 μm) compared to original leaf litter and litter residues. Thus, G. pulex enhanced metal fixation by organic partition of sediments by increasing the amount of smaller particle of organic matter in aquatic ecosystems. In contrast, the capacity of metal/metalloid fixation in the smallest fraction of POM (<63 μm) was lower compared with leaf residues in treatment without invertebrates. Remobilization of metals and metalloids was very low for all measured elements. A significant effect of invertebrates on quantitative formation of DOC/DON was confirmed. The quality of released DOC/DON, which may affect metal/metalloid remobilization, was also significantly affected by invertebrate shredders (e.g., more carboxylates). Hence, invertebrate shredder enhanced significantly the fixation of metals/metalloids into POM in slightly acidic environments.
Mostrar más [+] Menos [-]Co-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis
2012
Fontaine, Barbara | Piccolo, Alessandro
INTRODUCTION: A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin. MATERIALS AND METHODS: Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HPSEC), the unbound PCP recovered from reacting humic solutions was evaluated by gas-chromatography/electron capture detector, and the oxidative catalyzed coupling of pentafluorophenol (PFP) into humic matter was assessed by liquid-state 19F-NMR spectroscopy. HPSEC showed that the catalyzed oxidative coupling between PCP and humic molecules increased the apparent weight-average molecular weight (M w) values in both humic substances. RESULTS AND DISCUSSION: HPSEC further indicated that the co-polymerization reaction turned the loosely bound humic supramolecular structures into more stable conformations, which could no longer be disrupted by the disaggregating effect of acetic acid. The occurrence of covalent linkages established between PCP and humic molecules was also suggested by the very little amount of PCP found free in solution after the catalyzed co-polymerization. 19F-NMR spectroscopy suggested that also PFP could be oxidatively coupled to humic materials. PFP-humic co-polymerization reaction produced 19F-spectra with many more 19F signals and wider chemical shifts spread than for PFP alone or PFP subjected to catalyzed coupling without humic matter. CONCLUSIONS: These findings show that biomimetic iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the co-polymerization reaction may become a useful technology to remediate soils and waters contaminated by polyhalogenated phenols and their analogues.
Mostrar más [+] Menos [-]Superior photodecomposition of pyrene by metal ion-loaded TiO2 catalyst under UV light irradiation
2012
Rani, Malka | Gupta, Nidhi | Pal, Bonamali
BACKGROUND: The photocatalytic degradation of pyrene under UV (125 W Hg-Arc, 10.4 mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (−0.1 eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron–hole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions. RESULTS AND DISCUSSION: The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (−0.25 eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2 wt.%, the pyrene photodecomposition rate also become faster.
Mostrar más [+] Menos [-]Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza
2012
Kristanti, Risky Ayu | Kanbe, Masahiro | Hadibarata, Tony | Toyama, Tadashi | Tanaka, Yasuhiro | Mori, Kazu-hiro
INTRODUCTION: The accelerated biodegradation of 3-nitrophenol (3-NP) in the rhizosphere of giant duckweed (Spirodela polyrrhiza) was investigated. MATERIALS AND METHODS: Biodegradation of 3-nitrophenol in the rhizosphere of a floating aquatic plant, S. polyrrhiza, was investigated by using three river water samples supplemented with 10 mg l−1 of 3-NP. Isolation and enrichment culture of 3-NP-degrading bacteria were performed in basal salts medium containing 3-NP (50 mg l−1). The isolated strains were physiologically and phylogenetically characterized by using an API20NE kit and 16S rRNA gene sequencing. RESULTS AND DISCUSSION: Accelerated removal of 3-NP (100%) was observed in river water samples with S. polyrrhiza compared with their removal in plant-free river water. Also, 3-NP persisted in an autoclaved solution with aseptic plants, suggesting that the accelerated 3-NP removal resulted largely from degradation by bacteria inhabiting the plant rather than from adsorption and uptake by the plant. We successfully isolated six and four strains of 3-NP-degrading bacteria from the roots of S. polyrrhiza and plant-free river water, respectively. Phylogenetic analysis based on 16S rRNA gene divided the 3-NP-degrading bacteria into two taxonomic groups: the genera Pseudomonas and Cupriavidus. The strains belonging to the genus Cupriavidus were only isolated from the roots of duckweed. All strains isolated from the roots utilized 3-NP (0.5 mM) as a sole carbon and energy source, indicating that they could have contributed to the accelerated degradation of 3-NP in the rhizosphere of S. polyrrhiza. CONCLUSIONS: The rhizoremediation using S. polyrrhiza and its rhizosphere bacteria can be an effective strategy for cleaning up the 3-NP-contaminated surface waters.
Mostrar más [+] Menos [-]Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants
2012
Juang, Kai-Wei | Ho, Pei-Chi | Yu, Chun-Hui
PURPOSE: We used a sequential extraction to investigate the effects of compost amendment on Cd fractionation in soil during different incubation periods in order to assess Cd stabilization in soil over time. METHODS: Pot experiments using rice plants growing on Cd-spiked soils were carried out to evaluate the influence of compost amendment on plant growth and Cd accumulation by rice. Two agricultural soils (Pinchen and Lukang) of Taiwan were used for the experiments. The relationship between the redistribution of Cd fractions and the reduction of plant Cd concentration due to compost amendment was then investigated. RESULTS AND DISCUSSION: Compost amendment in Pinchen soil (lower pH) could transform exchangeable Cd into the Fe- and Mn-oxide-bound forms. With increasing incubation time, exchangeable Cd tended to transform into carbonate- and Fe- and Mn-oxide-bound fractions. In Lukang soil (higher pH), carbonate- and Fe- and Mn-oxide-bonded Cd were the main fractions. Exchangeable Cd was low. Compost amendment transformed the carbonate-bound form into the Fe and Mn oxide form. Pot experiments of rice plants showed that compost amendment enhanced plant growth more in Pinchen soil than in Lukang soil. Compost amendment could significantly reduce Cd accumulation in rice roots in both Pinchen and Lukang soils and restrict internal transport of Cd from the roots to the shoots. Because exchangeable Cd can be transformed into the stronger bonded fractions quickly in Pinchen soil, a reduction of Cd accumulation in rice due to compost amendment of Pinchen soil was significant by 45 days of growth. However, carbonate-bonded fractions in Lukang soil may provide a source of available Cd to rice plants, and exchangeable and carbonate-bonded fractions are transformed into the other fractions slowly. Thus, reduction of Cd accumulation by rice due to compost amendment in Lukang soil was significant by 75 days of growth. CONCLUSIONS: The results of the study suggest that the effectiveness of compost amendment used for stabilization of Cd and to decrease the phytoavailability of Cd for rice plants is different in acidic and alkaline soils. In acidic soil, Cd fractionation redistributes quickly after compost amendment and shows a significant reduction of Cd accumulation by the plant within a few weeks. In alkaline soil, due to the strongly bound fractions of Cd being in greater quantity than the weakly bound ones, a longer period (a few months) to redistribute Cd fractions is needed.
Mostrar más [+] Menos [-]Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47
2012
Ye, Roy R. | Lei, Elva N. Y. | Lam, Michael H. W. | Chan, Alice K. Y. | Bo, Jun | van de Merwe, Jason P. | Fong, Amy C. C. | Yang, Michael M. S. | Lee, J. S. | Segner, Helmut E. | Wong, Chris K. C. | Wu, Rudolf S. S. | Au, Doris W. T.
BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = −0.8576 to −0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional expression of these complement components in marine medaka were likely induced by the parent compound instead of biotransformed products. Our results clearly demonstrate that future direction for fish immunotoxicology and risk assessment of immunosuppressive chemicals must include parallel evaluation for both genders.
Mostrar más [+] Menos [-]Dynamics of phosphorus forms in the bottom sediments and their interstitial water for the Prut River (Moldova)
2012
Rusu, Vasile | Postolachi, Larisa | Povar, Igor | Alder, Alfredo | Lupașcu, Tudor
Phosphorus concentration in rivers results from both external inputs and internal loading from the bottom sediments. Seasonal, spatial, and multi-annual dynamics of phosphorus forms in bottom sediments and their interstitial water for the river Prut (Moldova) were evaluated. In order to determine content of total phosphorus in the bottom sediments, fresh (wet) samples were subjected to persulfate oxidation. The content of inorganic phosphorus was determined after acidic oxidation of samples. The amount of organic phosphorus was obtained by subtracting inorganic phosphorus from the amount of total phosphorus. Content of phosphorus forms in interstitial water was determined after centrifugation of fresh (wet) sediments. In general, the shape of dynamics of the amounts of inorganic phosphorus in sediments was close during years 2009, 2010, and 2011, with registered higher contents of this form on the middle course of the river. The spatial dynamics of organic phosphorus is less homogeneous along the Prut River. During 2009, higher amounts of organic phosphorus were recorded on the middle sector. During the spring of year 2010, the content of organic phosphorus in sediments was practically not changed along the river. The ratio of inorganic/organic phosphorus in bottom sediments was similar during the researched years, with the predominance of the inorganic phosphorus being recorded. Also, the increasing tendency of the percentage of organic phosphorus from spring to summer was identified. Generally, appropriate spatial and seasonal dynamics of phosphorus forms in bottom sediments and their interstitial water were recorded, although sometimes with some differences.
Mostrar más [+] Menos [-]Removal of Pb(II) ions from aqueous solution and industrial effluent using natural biosorbents
2012
Singha, Biswajit | Das, Sudip Kumar
PURPOSE: The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry. METHODS: Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent. RESULTS: The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin–Radushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents. CONCLUSION: The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.
Mostrar más [+] Menos [-]Diphenyl diselenide attenuates hepatic and hematologic toxicity induced by chlorpyrifos acute exposure in rats
2012
Acker, Carmine Inês | Souza, Ana Cristina Guerra | dos Santos, Maurício Portella | Mazzanti, Cinthia Melazzo | Nogueira, Cristina Wayne
PURPOSE: In this study, we investigated the effect of diphenyl diselenide [(PhSe)2] on chlorpyrifos (CPF)-induced hepatic and hematologic toxicity in rats. METHODS: Rats were pre-treated with (PhSe)2 (5 mg/kg) via the oral route (oral gavage) once a day for 7 days. On the eighth and ninth days, rats were treated with (PhSe)2 (5 mg/kg) 30 min prior to CPF (50 mg/kg, by subcutaneous route). The aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activities were determined in plasma of rats. Lipid peroxidation, protein carbonyl, and non-protein thiol levels as well as catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and gluthatione S-transferase activities were determined in livers of rats. Hematological parameters were also determined. RESULTS: The results showed that CPF caused hepatic oxidative damage, as demonstrated by an increase in lipid peroxidation and protein carbonyl levels which was associated with a decrease in antioxidant defenses. CPF exposure caused a reduction in the leukocyte, indicating hematologic toxicity. (PhSe)2 was effective in attenuating these toxic effects caused by CPF exposure in rats. CONCLUSIONS: The results indicated that (PhSe)2 was effective in protecting the hepatic and hematologic toxicity induced by acute CPF exposure in rats.
Mostrar más [+] Menos [-]