Refinar búsqueda
Resultados 1511-1520 de 6,473
Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils
2020
Mu, Jing | Hu, Zhengyi | Huang, Lijuan | Xie, Zijian | Holm, Peter E.
Industrial by-products provide materials for remediation measures. In this study, a silicon-iron amendment was prepared from residue originating from acid-extracted copper (Cu) tailings based on thermal activation at temperatures ranging from 550 °C to 1150 °C for 30 min with the use of additives (CaO, Na₂CO₃, NaOH). The remediation performance of the amendment was evaluated through soil incubation and greenhouse pot experiments with vetiver (Vetiveria zizanioides). The results showed that the highest levels of soluble Si (6.11% of the total Si) and Fe (2.3% of the total Fe) in the amendment were achieved with thermal activation at 1150 °C for 30 min using an optimal ratio between residue and additives (residue: CaO: Na₂CO₃: NaOH = 1: 0.4: 0.4: 0.2). Heavy metal release indicated that the amendment could be safely used for soil remediation. The incubation experiments showed that the DTPA-extractable Cd, Cr and Pb in contaminated soils decreased with increasing amendment rate, which was not observed for As. The amendment-induced decrease in the Cd, Cr and Pb availability in contaminated soils could be explained by pH-change induced immobilization, Fe-induced chemisorption, Si-induced co-precipitation, and Ca-induced ion exchange. Correlation analysis suggested that there were significant negative correlations between DTPA-extractable Cd, Cr and Pb and the pH, Fe, Si, and Ca in soil pore water and soil. The most suitable amendment rate was determined to be 1% by balancing the efficacy and wise utilization of the amendment. The pot experiment demonstrated that the amendment promoted the vetiver growth and stimulated the accumulation of Cd and Cr in the roots. The amendment was proved to be promising for the phytostabilization of Cd, Cr and Pb in contaminated soils. Further investigations are required to determine whether the amendment is a tool for the long-term remediation of multi-metal-contaminated soils at the field scale.
Mostrar más [+] Menos [-]Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: Batch and column scale studies
2020
Imran, Muhammad | Haq Khan, Zia Ul | Iqbal, Jibran | Shah, Noor Samad | Muzammil, Saima | Ali, Shafaqat | Muhammad, Nawshad | Aziz, Arwa | Murtaza, Behzad | Naeem, Muhammad Asif | Amjad, Muhammad | Shāhid, Muḥammad | Z̲ākir ʻAlī, | Rizwan, Muhammad
The present study is the first attempt to evaluate the pilot and batch scale adsorption potential of siltstone (SS) and its nanocomposites with biochar (EDB/SS), magnetite nanoparticles (MNPs/SS) and MNPs/EDB/SS for Cd removal from contaminated water. The SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were characterized with FTIR, XRD, BET, SEM, TEM, TGA and point of zero charge (PZC). The effects of adsorbent dosage, contact time, initial Cd concentration, pH and presence of competing ions were evaluated on the Cd removal and its adsorption. The order for Cd removal was: MNPs/EDB/SS > MNPs/SS > EDB/SS > SS (95.86–99.72% > 93.10–98.5% > 89.66.98–98.40% > 74.90–90%). Column scale experiments yielded maximum retention (95%) of Cd even after 2 h of injection at 100 mg Cd/L. The exhausted SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were reused without losing significant adsorption potential. Similarly, maximum Cd adsorption (117.38 mg/g) was obtained with MNPs/EDB/SS at dose 1.0 g/L. The results revealed that coexisting cations reduced the Cd removal due to competition with Cd ions. The experimental results were better explained with Freundlich isotherm model and pseudo 2nd order kinetic models. The results revealed that SS and its composites can be used efficiently for the removal of Cd from contaminated water.
Mostrar más [+] Menos [-]Dissolved organic matter does not promote glyphosate degradation in auto-heterotrophic aquatic microbial communities
2020
Artigas, Joan | Batisson, Isabelle | Carles, Louis
Environmental dissolved organic matter (DOM) has been proved to increase microbial population sizes and stimulate the degradation of some pesticide molecules. Among these molecules, the present study investigated the biodegradation of the herbicide glyphosate depending on photoautotrophs DOM supply in a microbial consortium isolated from river biofilms. Degradation experiments in the laboratory were performed in dark and light conditions, as well as after antibiotic supply, in order to characterize the eventual interactions between photoautotrophs and heterotrophs activity during glyphosate degradation. Fifty percent of the initial concentration of glyphosate (0.6 mM) was transformed into aminomethyl phosphonic acid (AMPA) after 9 days in presence or absence of light. Accordingly, the photoautotrophic DOM supply was not stimulating glyphosate degradation by microbial heterotrophs. This lack of response was probably explained by the low net primary production values and weak dissolved organic carbon production recorded in light treatments. The supply of the antibiotic drastically stopped glyphosate transformation demonstrating the central role of bacteria in the biodegradation of the herbicide. Glyphosate also modified the structure of prokaryotes assemblages in the consortium by increasing the relative abundances of Alphaproteobacteria and slightly decreasing those of Gammaproteobacteria. The chemoorganotrophic bacteria Phenylobacterium sp. (Alphaproteobacteria) was related to the transformation of glyphosate in our microbial consortium. The present study highlights the complexity of microbial interactions between photoautotrophs and heterotrophs in microbial assemblages that can contribute to the degradation of pesticides present in aquatic environments.
Mostrar más [+] Menos [-]Distribution and sources of DDT and its metabolites in porewater and sediment from a typical tropical bay in the South China Sea
2020
Peng, Shiyun | Kong, Deming | Li, Liting | Zou, Chunlin | Chen, Fajin | Li, Meiju | Cao, Tao | Yu, Chiling | Song, Jianzhong | Jia, Wanglu | Peng, Ping’an
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been banned around the world. However, DDT is still frequently detected in natural environments, particularly in aquaculture and harbor sediments. In this study, 15 surface sediment samples were collected from a typical tropical bay (Zhanjiang Bay) in the South China Sea, and the levels of DDT and its metabolites in sediment and porewater samples were investigated. The results showed that concentrations of DDXs (i.e., DDT and its metabolites) in bulk sediments were 1.58–51.0 ng g⁻¹ (mean, 11.5 ng g⁻¹). DDTs (DDT and its primary metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE)) were the most prominent, accounting for 73.2%–98.3% (86.1% ± 12.8%) of the DDXs. Additionally, high-order metabolites (i.e., 1-chloro-2,2-bis(4′-chlorophenyl)ethylene (p,p′-DDMU), 2,2-bis(p-chlorophenyl)ethylene (p,p′-DDNU), 2,2-bis(p-chlorophenyl)ethanol (p,p′-DDOH), 2,2-bis(p-chlorophenyl)methane (p,p′-DDM), and 4,4′-dichlorobenzophenone (p,p′-DBP)) were also detected in most of the sediment and porewater samples, with DDMU and DBP being predominant. The DDTs concentration differed among the sampling sites, with relatively high DDTs concentrations in the samples from the aquaculture zone and an area near the shipping channel and the Haibin shipyard. The DDD/DDE ratios indicated a reductive dichlorination of DDT to DDD under anaerobic conditions at most of the sampling sites of Zhanjiang Bay. The possible DDT degradation pathway in the surface sediments of Zhanjiang Bay was p,p′-DDT/p,p′-DDD(p,p′-DDE)/p,p′-DDMU/p,p′-DDNU/ … /p,p′-DBP. The DDXs in the sediments of Zhanjiang Bay were mainly introduced via mixed sources of industrial DDT and dicofol, including fresh input and historical residue. The concentrations of DDXs in porewater samples varied from 66.3 to 250 ng L⁻¹, exhibiting a distribution similar to that in the accompanying sediments. However, the content of high-order metabolites was relatively lower in porewater than in sediment, indicating that high-order degradation mainly occurs in particles. Overall, this study helps in understanding the distribution, source, and degradation of DDT in a typical tropical bay.
Mostrar más [+] Menos [-]Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency
2020
Zou, Rong | Wang, Li | Li, Yuncong C. | Tong, Zhaohui | Huo, Wenmin | Chi, Keyu | Fan, Hongli
Amaranth (Amaranthus mangostanus L.) has superior capability for accumulating cadmium (Cd) and has the potential to be used for phytoremediation of Cd contaminated soils. Iron (Fe) is chemically similar to Cd and may mediate Cd-induced physiological or metabolic impacts in plants. The purpose was to investigate the model of time-dependent and concentration-dependent kinetics of Cd absorption under Fe deficiency, understanding the physiological mechanism of Cd absorption in amaranth roots. The kinetic characteristics of Cd uptake by amaranth grown in Cd enriched nutritional solution with or without Fe addition and with methanol-chloroform, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and lanthanum chloride (LaCl3) were compared using 109Cd2+ isotope labeling technique. The results showed that Cd uptake was time-dependent and about 90–93% of uptake occurred during the first 150 min. The kinetics of Cd uptake showed that two stages were involved. The saturation stage fitted the Michaelis-Menten model when concentrations of Cd were lower than 12.71 μmol/L and then the absorption of Cd by roots was increased linearly during the second stage. Only linear absorption was observed with methanol-chloroform treatment while the metabolic inhibitor CCCP inhibited only the saturation absorption process, and the Ca channel inhibitor LaCl3 partially inhibited the two stages of absorption. These results indicated that the root absorption of 109Cd2+ was enhanced under Fe deficiency which induced more Fe transporters in the root cell membrane, and the Ca channel, apoplastic and symplastic pathways enhanced the Cd absorption in roots.
Mostrar más [+] Menos [-]Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas
2020
Elizalde-Velázquez, Armando | Carcano, Analicia M. | Crago, Jordan | Green, Micah J. | Shah, Smit A. | Cañas-Carrell, Jaclyn E.
In recent years, reports of plastic debris in the gastrointestinal (GI) tract of fish have been well documented in the scientific literature. This, in turn, increased concerns regarding human health exposure to microplastics through the consumption of contaminated fish. Most of the available research regarding microplastic toxicity has focused on marine organisms through direct feeding or waterborne exposures at the individual level. However, little is known about the trophic transfer of microplastics through the aquatic food chain. Freshwater zooplankton Daphnia magna (hereafter Daphnia), and the fathead minnow Pimephales promelas (FHM), are well-known model species used in standard toxicological studies and ecological risk assessments that provide a simple model for trophic transfer. The aim of this study was to assess the tissue translocation, trophic transfer, and depuration of two concentrations (20 and 2000-part ml⁻¹) of 6 μm polystyrene (PS) microplastics particles between Daphnia and FHM. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were determined. Fluorescent microscopy was used to determine the number of particles in the water media and within the organs of both species. Throughout the five days of exposure, PS particles were only found within the GI tract of both species. The BCF for Daphnia was 0.034 ± 0.005 for the low concentration and 0.026 ± 0.006 for the high concentration. The BAF for FHM was 0.094 ± 0.037 for the low concentration and 0.205 ± 0.051 for the high concentration. Between 72 and 96 h after exposure all microplastic particles were depurated from both species. The presence of food had a significant effect on the depuration of microplastic particles from Daphnia but not for FHM. Based on the low BCF and BAF values for both species, rapid depuration rates, and null translocation of microplastic particles to organs and tissues from the GI tract, there is a low probability that microplastics will bioconcentrate and bioaccumulate under environmental conditions.
Mostrar más [+] Menos [-]Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil
2020
Mujtaba Munir, Mehr Ahmed | Liu, Guijian | Yousaf, Balal | Ali, Muhammad Ubaid | Cheema, Ayesha Imtiyaz | Rashid, Muhammad Saqib | Rehman, Abdul
In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil–plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC–HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC–HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC–HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC–HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.
Mostrar más [+] Menos [-]Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors
2020
Ho, Chi-Chang | Chen, Ling-Jyh | Hwang, Jing-Shiang
A widespread monitoring network of Airbox microsensors was implemented since 2016 to provide high-resolution spatial distributions of ground-level PM₂.₅ data in Taiwan. We developed models for estimating ground-level PM₂.₅ concentrations for all the 3 km × 3 km grids in Taiwan by combining the data from air quality monitoring stations and the Airbox sensors. The PM₂.₅ data from the Airbox sensors (AB-PM₂.₅) was used to predict daily mean PM₂.₅ levels at the grids in 2017 using a semiparametric additive model. The estimated PM₂.₅ level at the grids was further applied as a predictor variable in the models to predict the monthly mean concentration of PM₂.₅ at all the grids in the previous year. The modeling–predicting procedures were repeated backward for the years from 2016 to 2006. The model results revealed that the model R² increased from 0.40 to 0.87 when the AB-PM₂.₅ data were included as a nonlinear component in the model, indicating that AB-PM₂.₅ is a significant predictor of ground-level PM₂.₅ concentration. The cross-validation (CV) results demonstrated that the root of mean squared prediction errors of the estimated monthly mean PM₂.₅ concentrations were smaller than 5 μg/m³ and the R² of the CV models of 0.79–0.88 during 2006–2017. We concluded that Airbox sensors can be used with monitoring data to more accurately estimate long-term exposure to PM₂.₅ for cohorts of small areas in health impact assessment studies.
Mostrar más [+] Menos [-]Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition
2020
Mofikoya, Adedayo O. | Yli-Pirilä, Pasi | Kivimäenpää, Minna | Blande, James D. | Virtanen, Annele | Holopainen, Jarmo K.
White cabbage, Brassica oleracea, plants and artificial leaves covered with B. oleracea epicuticular wax were exposed to α-pinene and α-pinene oxidation products formed through the oxidation of α-pinene by ozone (O₃) and hydroxyl (OH) radicals. O₃ and OH-induced oxidation of α-pinene led to the formation of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol particles (SOA), referred to together as oxidation products (OP). Exposure of cabbage plants to O₃ and OH-induced α-pinene OP led to the deposition and re-emission of gas-phase OP by exposed cabbage plants. In a series of 2-choice bioassays, the specialist cruciferous herbivore, Plutella xylostella adults deposited less eggs on artificial leaves exposed to α-pinene OP than on control plants exposed to clean filtered air. P. xylostella larvae did not show a specific feeding preference when offered leaves from different exposure treatments. However, the generalist Indian stick insect, Carausius morosus, fed more on control filtered air-exposed plants than on those exposed to α-pinene OP. Taken together, our results show that exposure to α-pinene oxidation products affects VOC emissions of B. oleracea and alters P. xylostella oviposition and C. morosus feeding responses.
Mostrar más [+] Menos [-]Biological mechanisms of cadmium accumulation in edible Amaranth (Amaranthus mangostanus L.) cultivars promoted by salinity: A transcriptome analysis
2020
Guo, Shi-Hong | Jiang, Ling-Yan | Xu, Zhi-Min | Li, Qu-Sheng | Wang, Jun-Feng | Ye, Han-Jie | Wang, Lili | He, Bao-Yan | Zhou, Chu | Zeng, E. Y. (Eddy Y.)
Strategies to prevent cadmium (Cd) mobilization by crops under salinity conditions differs among distinct genotypes, but the biological mechanisms of Cd accumulation in different genotype crops promoted by salinity have remained scarce. In this study, we investigated the biological mechanisms of Cd accumulation in two quite different amaranth cultivars of low-Cd accumulator Quanhong (QH) and high-Cd accumulator Liuye (LY) in response to salt stress. Transcriptomes analysis was carried out on leaves and roots tissues of LY and QH grown with exchangeable Cd 0.27 mg kg⁻¹ and salinity 3.0 g kg⁻¹ treatment or control conditions, respectively. A total of 3224 differentially expressed genes (DEGs) in LY (1119 in roots, 2105 in leaves) and 848 in QH (207 in roots, 641 in leaves) were identified. Almost in each fold change category (2-2⁵, 2⁵-2¹⁰, >2¹⁰), the numbers of DEGs induced by salinity in LY treatments were much more than those in QH treatments, indicating that LY is more salt sensitive. Gene ontology (GO) analysis revealed that salinity stress promoted soil acidification and Cd mobilization in LY treatments through the enhancive expression of genes related to adenine metabolism (84-fold enrichment) and proton pumping ATPase (50-fold enrichment) in roots, and carbohydrate hydrolysis (2.5-fold enrichment) in leaves compared with that of whole genome, respectively. The genes expression of organic acid transporter (ALMT) was promoted by 2.71- to 3.94-fold in roots, facilitating the secretion of organic acids. Salt stress also inhibited the expression of key enzymes related to cell wall biosynthesis in roots, reducing the physical barriers for Cd uptake. All these processes altered in LY were more substantially compared with that of QH, suggesting that salt sensitive cultivars might accumulate more Cd and pose a higher health risk.
Mostrar más [+] Menos [-]