Refinar búsqueda
Resultados 1531-1540 de 1,966
Evaluation of the groundwater quality feasibility zones for irrigational purposes through GIS in Omalur Taluk, Salem District, South India Texto completo
2013
Karunanidhi, D. | Vennila, G. | Suresh, M. | Subramanian, S. K.
The present work is employed in Omalur Taluk (study area 538.10 km(2)), Salem District, Tamil Nadu, India. Eighty-nine groundwater samples were collected during pre-monsoon (May) 2011 and were analyzed for major cations and anions. The irrigational parameters like; EC, Kelley's ratio, sodium absorption ratio (SAR) values, Mg(2+) hazards, HCO3 (-) and residual sodium carbonate (RSC) have been worked out to know the suitability of the groundwater for irrigational purpose. Wilcox diagram indicates that out of 89 samples, 39 samples belong to good permissible category and Doneen diagram revealed that 98.88 % of the groundwater samples fall in Class I. The plotting of SAR values in USSL diagram indicates that all the samples have low SAR value. Out of 89 samples, 44 samples were in C3-S1 field. This implies that no alkali hazard is anticipated to the crops. In 44 locations (49.44 %), samples fall within C3-S1 category. This category is suitable for irrigation purpose. However, the concentration of bicarbonate was in significant amount showing 82 % of sites under "increasing problem" and the 4 % sites under "Severe Problem" zones. Finally, the above-said results are taken into a Geographic Information System (GIS) platform. To understand the spatial distribution of unsuitable zones, ArcGIS was employed. The present work reveals that groundwater in the Omalur Taluk is of good quality and is suitable for all uses including interbrain water transfer in the region.
Mostrar más [+] Menos [-]Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process Texto completo
2013
Grassi, Mariangela | Rizzo, Luigi | Farina, Anna
In the last years, a lot of emerging contaminants, such as, endocrine disruptors compounds (EDCs), pharmaceuticals, and personal care products (PPCPs) have been detected in wastewater. Because of their toxicity and possible adverse effects on the environment and humans, their release from urban wastewater treatment plants (UWWTPs) effluents should be minimized, particularly when a wastewater reuse for crops irrigation is expected. Many processes have been investigated for advanced treatment of UWWTP effluents as well as for emerging contaminant degradation; among these, adsorption process was successfully used to remove EDCs and PPCPs from wastewater. This article shortly reviews EDCs and PPCPs removal from UWWTP effluents by adsorption process using conventional and non-conventional adsorbents. The fate of EDCs and PPCPs in UWWTPs and the implications for agricultural wastewater reuse has been addressed too. In spite of the adsorption process looking to be a valuable alternative to other advanced technologies for the removal of emerging contaminants from wastewater, some gaps still remain to evaluate the actual feasibility at full scale. However, according to a few studies available in scientific literature on the use of both powdered activated carbon and granular activated carbon at full scale, adsorption process by activated carbon is a promising, potentially effective, and economically feasible solution for producing safe wastewater for agricultural reuse.
Mostrar más [+] Menos [-]Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater Texto completo
2013
Wu, Su-qing | Chang, Jun-jun | Dai, Yanran | Wu, Zhen-bin | Liang, Wei
In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH₄ ⁺-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH₄ ⁺-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p = 0.388), N (p = 0.236), and TP (p = 0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.
Mostrar más [+] Menos [-]Effect of deposit age on adsorption and desorption behaviors of ammonia nitrogen on municipal solid waste Texto completo
2013
Liao, Yan | Yang, Yu-Qiang | Shen, Dong-Sheng | Long, Yu-Yang
Ammonia nitrogen pollution control is an urgent issue of landfill. This research aims to select an optimal refuse for ammonia nitrogen removal in landfill from the point of view of adsorption and desorption behavior. MSW (municipal solid waste) samples which deposit ages were in the range of 5 to 15 years (named as R₁₅, R₁₁, R₇, and R₅) were collected from real landfill site. The ammonia nitrogen adsorption behaviors of MSW including equilibrium time, adsorption isotherms, and desorption behaviors including equilibrium time were determined. Furthermore, the effects of pH, OM, Cu(II), Zn(II), and Pb(II) on adsorption and desorption behavior of ammonia nitrogen were conducted by orthogonal experiment. The equilibrium time of ammonia nitrogen adsorption by each tested MSW was very short, i.e., 20 min, whereas desorption process needed 24 h and the ammonia nitrogen released from refuses was much lesser than that adsorbed, i.e., accounted for 3.20 % (R₁₅), 14.32 % (R₁₁), 20.59 % (R₇), and 20.50 % (R₅) of each adsorption quantity, respectively. The maximum adsorption capacity estimated from Langmuir isotherm appeared in R₁₅-KCl, i.e., 25,000 mg kg⁻¹. The best condition for ammonia nitrogen removal from leachate was pH >7.5, OM 23.58 %, Cu(II) <5 mg L⁻¹, Zn(II) <10 mg L⁻¹, and Pb(II) <1 mg L⁻¹. Ammonia nitrogen in landfill leachate could be quickly and largely absorbed by MSW but slowly and infrequently released. The refuse deposited for 15 years could be a suitable material for ammonia nitrogen removal.
Mostrar más [+] Menos [-]Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM₂.₅ in Guangzhou, southern China, using positive matrix factorization (PMF) Texto completo
2013
Gao, Bo | Guo, Hai | Wang, Xin-Ming | Zhao, Xiu-Ying | Ling, Zhen-Hao | Zhang, Zhou | Liu, Teng-Yu
From 28 November to 23 December 2009, 24-h PM₂.₅ samples were collected simultaneously at six sites in Guangzhou. Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) together with certain molecular tracers for vehicular emissions (i.e., hopanes and elemental carbon), coal combustion (i.e., picene), and biomass burning (i.e., levoglucosan) were determined. Positive matrix factorization (PMF) receptor model combined with tracer data was applied to explore the source contributions to PAHs. Three sources were identified by both inspecting the dominant tracer(s) in each factor and comparing source profiles derived from PMF with determined profiles in Guangzhou or in the Pearl River Delta region. The three sources identified were vehicular emissions (VE), biomass burning (BB), and coal combustion (CC), accounting for 11 ± 2 %, 31 ± 4 %, and 58 ± 4 % of the total PAHs, respectively. CC replaced VE to become the most important source of PAHs in Guangzhou, reflecting the effective control of VE in recent years. The three sources had different contributions to PAHs with different ring sizes, with higher BB contributions (75 ± 3 %) to four-ring PAHs such as pyrene and higher CC contributions (57 ± 4 %) to six-ring PAHs such as benzo[ghi]perylene. Temporal variations of VE and CC contributions were probably caused by the change of weather conditions, while temporal variations of BB contributions were additionally influenced by the fluctuation of BB emissions. Source contributions also showed some spatial variations, probably due to the source emission variations near the sampling sites.
Mostrar más [+] Menos [-]Wastewater treatment to enhance the economic viability of microalgae culture Texto completo
2013
Pires, J. C. M. | Alvim-Ferraz, M. C. M. | Martins, F. G. | Simões, M.
Microalgae culture is still not economically viable and it presents some negative environmental impacts, concerning water, nutrient and energy requirements. In this context, this study aims to review the recent advances on microalgal cultures in wastewaters to enhance their economic viability. We focused on three different culture concepts: (1) suspended cell systems, (2) cell immobilization, and (3) microalgae consortia. Cultures with suspended cells are the most studied. The nutrient removal efficiencies are usually high for wastewaters of different sources. However, biomass harvesting is difficult and a costly process due to the small cell size and lower culture density. On the other hand, the cell immobilization systems showed to be the solution for this problem, having as main limitation the nutrient diffusion from bulk to cells, which results in a reduced nutrient removal efficiency. The consortium between microalgae and bacteria enhances the growth of both microorganisms. This culture concept showed to be a promising technology to improve wastewater treatment, regarding not only nutrient removal but also biomass harvesting by bioflocculation. The aggregation mechanism must be studied in depth to find the process parameters that would lead to an effective and cheap harvesting process.
Mostrar más [+] Menos [-]Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health Texto completo
2013
Zhang, Ying | Dong, Xiaonan | Zhao, Jiang | Cao, Bo | Ge, Shijie | Hu, Miao
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN + AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02 ± 0.93 mg kg(-1). These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33 ± 34.93 mg C kg(-1) and 5.01 ± 0.17 mg CO2 g(-1) soil h(-1), respectively. The results of the polymerase chain reaction-degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon-Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.
Mostrar más [+] Menos [-]Changes of metal-induced toxicity by H2O 2/NO modulators in Scenedesmus quadricauda (Chlorophyceae) Texto completo
2013
Štork, František | Bačkor, Martin | Klejdus, Bořivoj | Hedbavny, Josef | Kováčik, Jozef
Effect of nitric oxide donor (sodium nitroprusside, SNP, 500 μM) or hydrogen peroxide scavenger (dithiothreitol, DTT, 500 μM) on cadmium (Cd) or copper (Cu) uptake (150 μM solutions) and toxicity using Scenedesmus quadricauda was studied. Combined treatments (Cd or Cu + DTT or SNP) usually ameliorated metal-induced toxicity at the level of pigments, proteins, and mineral nutrients in comparison with respective metal alone. Viability tests (MTT and TTC) showed the lowest values preferentially in Cu treatments, indicating higher toxicity in comparison with Cd. Cd showed low impact on amino acids while strong Cu-induced depletion was mitigated by DTT and SNP. Amount of ROS and NO showed the most pronounced responses in SNP variants being rather reciprocal than parallel and regulated ascorbate peroxidase activity. Blot gel analyses of hsp70 protein did not reveal extensive changes after given exposure period. Phenols were elevated by DTT alone while all Cu treatments revealed depletion. Total Cu content decreased while total Cd content increased in metal + SNP or metal + DTT. Subsequent experiment using lower Cd, SNP or DTT doses (10 and 100 μM) revealed concentration-dependent impact on Cd uptake. Overall, DTT was found to be more suitable for the amelioration of metal-induced toxicity.
Mostrar más [+] Menos [-]Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration Texto completo
2013
Shi, Jiaqi | Feng, Mingbao | Zhang, Xuesheng | Wei, Zhongbo | Wang, Zunyao
The lethal doses (LD₅₀s) of fluorinated, chlorinated, brominated, and iodinated benzene, phenol, and diphenyl ether in mice were ascertained respectively under the consistent condition. The acute toxicity of four benzenes orders in fluorobenzene (FB) < iodobenzene < chlorobenzene≈bromobenzene, that of four phenols orders in 4-iodophenol≈4-bromophenol < 4-chlorophenol (4-MCP) < 4-fluorophenol (4-MFP), and that of four diphenyl ethers orders in 4,4′-iododiphenyl ether < 4,4′-difluorodiphenyl ether < 4,4′-dichlorodiphenyl ether≈4,4′-dibromodiphenyl ether. General behavior adverse effects were observed, and poisoned mouse were dissected to observe visceral lesions. FB, 4-MCP, and 4-MFP produced toxic faster than other halogenated benzenes and phenols, as they had lower octanol–water partition coefficients. Pathological changes in liver and liver/kidney weight changes were also observed. Hepatic superoxide dismutase, catalase activities, and malondialdehyde level were tested after a 28-day exposure, which reflects a toxicity order basically consistent with that reflected by the LD₅₀s. By theoretical calculation and building models, the toxicity of benzene, phenol, and diphenyl ether were influenced by different structural properties.
Mostrar más [+] Menos [-]Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions Texto completo
2013
Trapp, Stefan | Eggen, Trine
The uptake of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tributyl phosphate (TBP), the insect repellant N,N-diethyl toluamide (DEET), and the plasticizer n-butyl benzenesulfonamide (NBBS) into plants was studied in greenhouse experiments and simulated with a dynamic physiological plant uptake model. The calibrated model was coupled to a tipping buckets soil transport model and a field scenario with sewage sludge application was simulated. High uptake of the polar, low-volatile compounds TCEP, TCPP, and DEET into plants was found, with highest concentrations in straw (leaves and stem). Uptake into carrot roots was high for TCPP and TBP. NBBS showed no high uptake but was rapidly degraded. Uptake into barley seeds was small. The pattern and levels of uptake could be reproduced by the model simulations, which indicates mainly passive uptake and transport (i.e., by the transpiration stream, with the water) into and within the plants. Also the field simulations predicted a high uptake from soil into plants of TCEP, TCPP, and DEET, while TBP is more likely taken up from air. The BCF values measured and calculated in the greenhouse study are in most cases comparable to the calculated values of the field scenario, which demonstrates that greenhouse studies can be suitable for predicting the behavior of chemicals in the field. Organophosphates have a high potential for bioaccumulation in crops and reach agricultural fields both via sewage sludge and by atmospheric deposition.
Mostrar más [+] Menos [-]