Refinar búsqueda
Resultados 1551-1560 de 6,560
PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis Texto completo
2020
Dai, Pengyuan | Shen, Dan | Tang, Qian | Huang, Kai | Li, Chunmei
Particulate matter (PM) released from the processes of livestock production has a negative impact on the health of animals and workers. Herein, the concentration, major chemical components, morphology and microbiological compositions of particulate matter 2.5 (PM2.5, particles with aerodynamic diameter less than 2.5 μm) in a broiler breeding house were investigated. The results showed that the PM2.5 distribution in the chicken house was affected by the illumination, draught fans, chicken frame structure and activity of the chickens in the broiler breeding house. Component analysis showed that organic carbon (OC) accounted for the largest proportion, and followed by element carbon (EC), SO42−, NO3−, NH4+, Na+, K+ and Ca2+. Ultrastructural observations revealed that the shape of PM2.5 had a round, rectangular, chain-like and irregular shape. The concentration of endotoxin was approximately 0.3 EU/m3. Microbiological analysis showed that at the genus level, the pathogenic bacteria included Staphylococcus, Corynebacterium, Enterococcus, Parabacteroides, Escherichia and Megamonas. The abundant harmful fungi were Aspergillus, Scopulariopsis, Wallemia, and Fusarium. Through redundancy analysis (RDA) analysis, we determined that OC, EC, Na+, K+, and NH4+ had strong correlations with Brachybacterium, Brevibacterium, Corynebacterium, Escherichia, Scopulariopsis and Microascus. SO42− was closely related to Scopulariopsis and Salinicoccus. Salinicoccus was also strongly correlated with NO3−. Our results indicated that feed, faeces, and outside soot are contributed to the increase in PM2.5 concentration in the chicken house, while the sources of the dominant bacterial and fungi might be feed, faeces, suspended outside soil and cereal crops.
Mostrar más [+] Menos [-]Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride Texto completo
2020
Liu, Haiyang | Qu, Jiao | Zhang, Tingting | Ren, Miao | Zhang, Zhaocheng | Cheng, Fangyuan | He, Dongyang | Zhang, Ya-nan
The removal of antibiotics has attracted much attention due to their extremely high adverse impacts on the environment. However, the potential risks of degradation intermediates are seldom reported. In this work, the influence of different factors on the electro-catalytic degradation efficiency of tetracycline hydrochloride (TCH) by the prepared carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode was investigated. Under optimal conditions (10 wt% CNTs dosage, pH = 7), the maximum degradation efficiency for TCH (10 mg L⁻¹) reached up to 96% within 30 min treatment with 4 V potential. Superoxide anions (•O₂⁻) played an important role in the electro-catalytic degradation. Totally 10 degradation intermediates were identified using HPLC-MS/MS, and the degradation pathway was proposed. Toxicities of the parent antibiotic and the identified intermediates were calculated using the ECOSAR (Ecological Structure Activity Relationship) program in EPISuite, and results showed that more toxic intermediates were generated. The maximal chronic toxicity for green algae of the intermediate increased 1439.92 times. Furthermore, antimicrobial activity was further verified by disk agar biocidal tests with Escherichia coli ATCC25922 and higher biotoxicity intermediates compared with parent compounds were confirmed to be formed. Therefore, more attention should be paid on the potential risk of degradation intermediates in the treatment of wastewater containing antibiotics.
Mostrar más [+] Menos [-]Health risk-oriented source apportionment of PM2.5-associated trace metals Texto completo
2020
Xie, Jiawen | Jin, Ling | Cui, Jinli | Luo, Xiaosan | Li, Jun | Zhang, Gan | Li, Xiangdong
In health-oriented air pollution control, it is vital to rank the contributions of different emission sources to the health risks posed by hazardous components in airborne fine particulate matters (PM₂.₅), such as trace metals. Towards this end, we investigated the PM₂.₅-associated metals in two densely populated regions of China, the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, across land-use gradients. Using the positive matrix factorization (PMF) model, we performed an integrated source apportionment to quantify the contributions of the major source categories underlying metal-induced health risks with information on the bioaccessibility (using simulated lung fluid) and speciation (using synchrotron-based techniques) of metals. The results showed that the particulate trace metal profiles reflected the land-use gradient within each region, with the highest concentrations of anthropogenically enriched metals at the industrial sites in the study regions. The resulting carcinogenic risk that these elements posed was higher in the YRD than in the PRD. Chromium was the dominant contributor to the total excessive cancer risks posed by metals while manganese accounted for a large proportion of non-carcinogenic risks. An elevated contribution from industrial emissions was found in the YRD, while traffic emissions and non-traffic combustion (the burning of coal/waste/biomass) were the common dominant sources of cancer and non-cancer risks posed by metals in both regions. Moreover, the risk-oriented source apportionment of metals did not mirror the mass concentration-based one, suggesting the insufficiency of the latter to inform emission mitigation in favor of public health. While providing region-specific insights into the quantitative contribution of major source categories to the health risks of PM₂.₅-associated trace metals, our study highlighted the need to consider the health protection goal-based source apportionment and emission mitigation in supplement to the current mass concentration-based framework.
Mostrar más [+] Menos [-]Uptake, translocation, and physiological effects of hematite (α-Fe2O3) nanoparticles in barley (Hordeum vulgare L.) Texto completo
2020
Tombuloglu, Huseyin | Slimani, Yassine | AlShammari, Thamer Marhoon | Bargouti, Muhammed | Ozdemir, Mehmet | Tombuloglu, Guzin | Ak̲h̲tar, Sult̤ān | Sabit, Hussain | Hakeem, Khalid Rehman | Almessiere, Munirah | Ercan, İsmail | Baykal, Abdulhadi
There has been a growing concern with the environmental influences of nanomaterials due to recent developments in nanotechnology. This study investigates the impact and fate of hematite nanoparticles (α-Fe₂O₃ NPs) (∼14 nm in size) on a crop species, barley (Hordeum vulgare L.). For this purpose, hematite NPs (50, 100, 200, and 400 mg/L) were hydroponically applied to barley at germination and seedling stages (three weeks). Inductively coupled plasma mass spectrophotometry (ICP-MS) along with vibrating sample magnetometer (VSM) techniques were used to track the NPs in plant tissues. The effects of NPs on the root cells were observed by scanning electron microscopy (SEM) and confocal microscopy. Results revealed that α-Fe₂O₃ NPs significantly reduced the germination rate (from 80% in control to 30% in 400 mg/L), as well as chlorophyll (36–39%) and carotenoid (37%) contents. Moreover, the treatment led to a significant decline in the quantum yield of photosystem II (Fv/Fm). Leaf VSM analysis indicated a change in magnetic signal for NPs-treated samples compared with untreated ones, which is mostly attributed to the iron (Fe) ions incorporated within the leaf tissue. Besides, Fe content in the roots and leaf had gradually increased by the increasing doses of NPs, which was confirming NPs’ translocation to the aerial parts. Microscopic observations revealed that α-Fe₂O₃ NPs altered root cell morphology and led to the injury of cell membranes. This study, in the light of our findings, shows that α-Fe₂O₃ NPs (∼14 nm in size) are taken up by the roots of the barley plants, and migrate to the plant leaves. Besides, NPs are phytotoxic for barley as they inhibit germination and pigment biosynthesis. This inhibition is probably due to the injury of the cell membranes in the roots. Therefore, the use of hematite NPs in agriculture and thereby their environmental diffusion must be addressed carefully.
Mostrar más [+] Menos [-]Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China Texto completo
2020
Cao, Yuanxin | Lin, Chunye | Zhang, Xuan | Liu, Xitao | He, Mengchang | Ouyang, Wei
Contamination by polycyclic aromatic hydrocarbons (PAHs) has been observed at high elevation environments; however, the occurrence and spatial variation of PAHs in alpine lakes of China is not well understood. We measured 15 priority PAHs in the sediments of Lake Qinghai in the Qinghai-Tibet Plateau, and assessed their distribution, source, and ecological risks. The total PAH concentration ranged from 30.4 to 125.2 ng g⁻¹. Low molecular weight PAHs were dominant in the sediments, suggesting a local source for the emissions. Sediment sites closer to local settlements and rivers had higher concentration of PAHs. The concentration of PAHs was significantly correlated with pH, probably as a result of the high salinity of the lake, while it was not significantly correlated with organic matter content. Molecular diagnostic ratio analysis indicated that PAHs were derived mainly from coal and biomass combustion. Specifically, the positive matrix factorization model showed that petrogenic sources, vehicular emissions, biomass combustion, and coal combustion contributed for 11.6, 16.3, 23.6, and 48.5% of the PAHs, respectively. The risk quotient method was used to assess ecological risk of PAHs individually. The results indicate that indeno[1,2,3-cd]pyrene, benzo[b]fluoranthene, benzo[a]pyrene, phenanthrene, and anthracene would produce moderate ecological risks in 5, 20, 65, 100, and 100% of the sediment sites, respectively, while the other 10 PAH homologues would scarcely produce any serious ecological risk. We used the hierarchical Archimedean copula integral assessment model to evaluate the integral risk of PAHs. The result showed that 10, 40, and 50% of the sediment sites belong to mid-high, low, and mid-low risk levels, respectively. The current concentration and risk levels of PAHs in this study might be used as a baseline to assess the influence of future anthropogenic activities.
Mostrar más [+] Menos [-]The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers Texto completo
2020
Tang, Xianjin | Li, Luyao | Wu, Chuan | Khan, Muhammed Imran | Manzoor, Maria | Zou, Lina | Shi, Jiyan
Arsenic (As) has been recognized as one of the most toxic metalloids present in the surface soil contaminating food chain and posing threat to human life. Sulfur (S) fertilizer is often supplied in paddy soil for rice growth, but its impact on As mobility and related bacteria remains poorly understood. In this study, a pot experiment was set up with two different types of sulfur treatments (element sulfur and Na₂SO₄) to evaluate the effect of sulfur fertilizers on As speciation in porewater, As fractions in soil, As accumulation in rice plants. Besides, rhizosphere bacterial composition and functional genes that might influence As mobility were also studied. The results revealed that the addition of 150 mg/kg Na₂SO₄ decreased As(III) and As(V) concentrations in soil porewater at maturation stage by 77% and 64%, respectively. With the same sulfur content, Na₂SO₄ was more effective than element sulfur. The addition of sulfur fertilizers promoted rice growth and reduced As accumulation in shoots, further reduced As translocation from root to above-ground parts by 39–59%. The addition of sulfur fertilizers had little effect on genes involved in As metabolism. However, the relative abundance of Fe(III) and sulfate reduction related genera increased with the addition of 150 mg/kg Na₂SO₄, consistent with the increase of Fe(III) reducing bacteria Geobacteraceae and sulfate reducing gene dsrA. The phenomenon likely influenced the decrease of As concentrations in soil porewater and rice uptake. The outcomes indicate that promoting Fe- and S- reducing bacteria in the rhizosphere by sulfur fertilizers may be one way to reduce As risk in the soil-rice system.
Mostrar más [+] Menos [-]Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids Texto completo
2020
Chang, Zhaofeng | Tian, Luping | Li, Fangfang | Wu, Min | Steinberg, Christian E.W. | Pan, Bo | Xing, Baoshan
Condensed organic matters (COM) with black carbon-like structures are considered as long-term carbon sinks because of their high stability. It is difficult to distinguish COM from general organic matter by conventional chemical analysis, thus the contribution by and interaction mechanisms of organo-mineral complexes in COM stabilization are unclear and generally neglected. Molecular markers related to black carbon-like structures, such as benzene polycarboxylic acids (BPCAs), are promising tools for the qualitative and quantitative analysis of COM. In this study, one natural soil and two cultivated soils with 25 y- or 55 y-tillage activities were collected and the distribution characteristics of BPCAs were detected. All the investigated soils showed similar BPCA distribution pattern, and over 60% of BPCAs were detected in clay fraction. The extractable BPCA contents were substantially increased after mineral removal. The ratios of BPCA contents before and after mineral removal indicate the extent of COM-mineral particle interactions, and our results suggested that up to 73% COM were protected by mineral particles, and more stronger interactions were noted on clay than on silt. The initial cultivation dramatically decreased COM-clay interactions, and this interaction was recovered only slowly after 55-y cultivation. Kaolinite and muscovite are important for COM protection. But a possible negative correlation between BPCAs and reactive iron oxides of the cultivated soils suggested that iron may promote COM degradation when disturbed by tillage activities. This study provided a new angle to study the stabilization of COM and emphasized the importance of organo-mineral complexes for COM stabilization.
Mostrar más [+] Menos [-]Synergistic effect of fenpropathrin and paclobutrazol on early life stages of zebrafish (Danio rerio) Texto completo
2020
Wang, Yanhua | Yang, Guiling | Shen, Weifeng | Xu, Chao | Di, Shanshan | Wang, Dou | Li, Xinfang | Wang, Xinquan | Wang, Qiang
Aquatic organisms are usually exposed to various co-existing pollutants. However, toxic effects of pesticide mixtures on aquatic organisms and its potential underlying mechanism still remain unclear. The joint effects of fenpropathrin (FEN) and paclobutrazol (PAC) on zebrafish (Danio rerio) using diverse toxicological endpoints were investigated in the current work. Our data exhibited that the 96-h LC₅₀ values of FEN to zebrafish at multiple life phases ranged from 0.0029 (0.0013–0.0042) to 0.16 (0.082–0.23) mg a.i. L⁻¹, which were lower by comparison to PAC ranging from 13.16 (8.564–21.03) to 23.43 (17.94–29.91) mg a.i. L⁻¹. Combination of FEN and PAC displayed synergistic effect on embryonic zebrafish. Activities of T-SOD, Cu/Zn-SOD and CYP450 were remarkably changed in the majority of single and mixture treatments by comparison to the untreated group. The mRNA levels of 17 genes related to oxidative stress, cellular apoptosis, immune system and endocrine system were assessed, and the data suggested that embryonic zebrafish were affected by both single pesticides and their mixtures. Five genes (P53, tsh, ERα, crh and cxcl-clc) showed greater alterations when exposed to pesticide mixtures by comparison to their individual chemicals. Therefore, it is urgently necessary to conduct more studies on mixture toxicities of different pesticides to explore the chemical mixtures with synergistic interactions.
Mostrar más [+] Menos [-]Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation Texto completo
2020
Park, Jin Hee
Chromium (Cr) is a toxic element among which hexavalent chromium [Cr(VI)] is more toxic than trivalent chromium [Cr(III)]. Chromium can be reduced or oxidized in soil because soil is a complex medium and various soil components affect redox reaction of Cr in soil. Therefore, Cr speciation in hydroponics and soil was compared and Cr uptake and speciation by lettuce grown in the media were evaluated. Higher phytotoxicity was found in Cr(III) spiked soil than in Cr(VI) spiked soil, while Cr toxicity was higher in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Chromium was mainly accumulated in lettuce roots as Cr(III), and more Cr was translocated from roots to shoots grown in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Accumulation of Cr in roots grown in Cr(III) treated nutrient solution reduced Fe, K, Ca, Mg, and P uptake in lettuce. Chromium valence state was Cr(III) in lettuce leaves and roots grown in both Cr(III) and Cr(VI) treated hydroponics and soil. Chromium speciation in hydroponically grown lettuce roots was Cr(III) coordinated with 6 oxygens in the first shell and 2 or 4 carbons in the second shell as analyzed by X-ray absorption spectroscopy (XAS), which was similar to chromium acetate. The valence state of Cr in Cr(III) and Cr(VI) treated nutrient solution was not changed, while Cr(VI) was reduced to Cr(III) in Cr(VI) spiked soil by soil organic matter. Spiking of Cr(III) induced reduction of Mn in soil, which resulted in an increase of bioavailable Mn concentration in the Cr(III) spiked soil. Therefore, the increased phytotoxic effect for lettuce in Cr(III) spiked soil can be attributed to the reduction of Mn and subsequent release of Mn(II). For Cr(III) contaminated soil, Mn speciation should be considered, and bioavailable Mn concentration should be monitored although Cr existed as Cr(III) in soil.
Mostrar más [+] Menos [-]A field study on the effects of combined biomanipulation on the water quality of a eutrophic lake Texto completo
2020
Chen, Zhaoqiong | Zhao, Dan | Li, Mingliang | Tu, Weiguo | Luo, Xiaoming | Liu, Xin
Lake eutrophication has become a serious environmental problem in China. Manipulations covering more elements of trophic pyramid are methods for lakes to obtain clear water state and should be studied in detail. In the present study, Meishan Dongpo Lake was divided into two parts, and a combined biomanipulation project was conducted in one part (RLake), and the other part was used as a control (CLake). Species of submerged-plant, fish, macrobenthos, and zooplankton were screened and a certain number of them were added to adjust the eco-chain in RLake. After restoration, the coverage of submerged macrophytes reached >85%; zooplankton greater than 0.6 mm in size increased in number, and the ratio of zooplankton biomass to chlorophyll-a (Chl-a) concentration increased. The dominant fish species changed, and disturbance of the sediment was reduced. The average density of mollusks in RLake was 111.5 ± 19.8 ind m⁻², which was much higher than that in CLake (36.7 ± 2.1 ind m⁻²). Water quality and clarity were substantially improved, and nutrient concentrations, particularly total phosphorus, total nitrogen, and Chl-a were significantly reduced. The aquatic community parameters were negatively correlated with the nutrient parameters and Chl-a. The ecological restoration have adjusted the aquatic ecosystem in RLake, and many positive feedback effects among the aquatic communities made them remove internal nutrients and Chl-a more efficiently.
Mostrar más [+] Menos [-]