Refinar búsqueda
Resultados 1581-1590 de 3,208
Thermal Impact from a Thermoelectric Power Plant on a Tropical Coastal Lagoon Texto completo
2015
Cardoso-Mohedano, J. G. | Bernardello, R. | Sanchez-Cabeza, J. A. | Ruiz-Fernández, A. C. | Alonso-Rodriguez, R. | Cruzado, A.
Tropical coastal areas are sensitive ecosystems to climate change, mainly due to sea level rise and increasing water temperatures. Furthermore, they may be subject to numerous stresses, including heat releases from energy production. The Urias coastal lagoon (SE Gulf of California), a subtropical tidal estuary, receives cooling water releases from a thermoelectric power plant, urban and industrial wastes, and shrimp farm discharges. In order to evaluate the plant thermal impact, we measured synchronous temperature time series close to and far from the plant. Furthermore, in order to discriminate the thermal pollution impact from natural variability, we used a high-resolution hydrodynamic model forced by, amongst others, cooling water release as a continuous flow (7.78 m³ s⁻¹) at 6 °C overheating temperature. Model results and field data indicated that the main thermal impact was temporally restricted to the warmest months, spatially restricted to the surface layers (above 0.6 m) and distributed along the shoreline within ∼100 m of the release point. The methodology and results of this study can be extrapolated to tropical coastal lagoons that receive heat discharges.
Mostrar más [+] Menos [-]The Increase in Bismuth Consumption as Reflected in Sewage Sludge Texto completo
2015
Amneklev, Jennie | Sörme, Louise | Augustsson, Anna | Bergbäck, Bo
As the use of dangerous substances in consumer products increases, these substances may also be found in society’s end products, among them sewage sludge. Measuring concentrations in sewage sludge can be a way to reflect the consumption of a substance. By using substance flow analysis, the inflow, stock and outflow of the specific substance to, e.g. a city region, may be analysed. Bismuth is a heavy metal that is found in increasing levels in sewage sludge in Swedish wastewater treatment plants (WWTPs) and a similar increase cannot be excluded for WWTPs around the world. This study aims to examine possible sources that could explain the amounts measured in one Swedish WWTP. Household products such as cosmetics (24 %) and plastics (14 %) are found to be major sources of Bi measured in sewage sludge. The remaining unidentified amounts in this study (approximately 50 %) are most likely found in effluent waters from industries or sources outside the household. There is, however, no information on measurements of Bi released by industry available and there is no legislation in place that may encourage industry to conduct such measurements.
Mostrar más [+] Menos [-]Rate Uptake of Three Common Pharmaceuticals in Celery, Apium Graveolens Texto completo
2015
Schroeder, Lauren M. | Blackwell, Brett | Klein, David | Morse, Audra N.
Recent droughts in the southwestern United States have heightened the interest in using more reclaimed water for agricultural irrigation. Treated wastewater effluent is a source of irrigation water and contains many pharmaceutical microcontaminants. Currently, there is little knowledge on if these microconstituents will enter food crops and if so where they will be found within the plant. For this experiment, the uptake of 17α-ethynylestradiol, fluoxetine HCl (Prozac®), and ibuprofen within different sections of a celery stalk over a 24-h time period was examined. Results found that all of these pharmaceuticals were taken up into the celery stalks within 24 h. Ibuprofen was found to have reached concentrations of 1 μg/g within the leaves in just 1 h. Metabolites of the ibuprofen were also detected at all locations within the stalk for all time periods. The concentration of EE2 in the submerged section of the stalk was found to increase from 0.031 to 0.911 μg/g of celery in just 23 h. The EE2 began to rise higher within the stalk to reach a concentration of 8.94 ng/g about 6 in above the base after 24 h. Fluoxetine HCl concentrations rose to 0.832 μg/g of celery within the submerged section of the stalk during the 24 h. After 12 h, fluoxetine HCl was detected within the bottom 4 in of the stalk. EE2, fluoxetine HCl, and ibuprofen all exhibit potential for uptake within food crops. Further studies on additional food crops and pharmaceuticals would be required to assess the full risk posed to human eating food crops irrigated with treated wastewater effluent.
Mostrar más [+] Menos [-]Recovery of Mercury from Spent Fluorescent Lamps via Oxidative Leaching and Cementation Texto completo
2015
Coskun, Sezen | Civelekoglu, Gokhan
In this work, the recovery of mercury from spent fluorescent lamps by oxidative leaching followed by cementation process was studied. Two different reactive solutions (NaOCl/NaCl and KI/I₂) during oxidative leaching were investigated whereas at the cementation process, metallic powders of iron (Fe), copper (Cu), and zinc (Zn) were used as reducing agents to capture mercury in solid phase. Mercury could be transferred to the solution with an efficiency of 96 % from the spent lamp samples through the NaOCl/NaCl reagent. The optimal leaching conditions were determined as 2-h contact time, 120 rpm agitation speed, pH 7.5, and 50 °C of temperature. The reducing agent, Zn, provided 99 % of the cementation. The optimal process conditions were observed to be as 5-min contact time, pH 1, and 5 g L⁻¹ of reducing agent concentration. This combined approach appears to be technically effective for the recovery of mercury from spent fluorescent lamps.
Mostrar más [+] Menos [-]The Treatment Performance and the Bacteria Preservation of Anammox: A Review Texto completo
2015
He, Shilong | Niu, Qigui | Ma, Haiyuan | Zhang, Yanlong | Li, Yu-You
Because of the low energy costs in the absence of the need for aeration, the non-requirement of a carbon source and alkali, and the reduced production of excess sludge, anaerobic ammonia oxidation (Anammox) has been extensively studied as an alternative to the conventional nitrification–denitrification pathway for biological nitrogen removal from wastewater. However, many challenges remain which need to be overcome to prepare the process for engineering application. These include the long doubling time of Anammox bacteria/autotrophic ammonia-oxidizing bacteria (AAOB), the low tolerance capacity to substrate concentration, and high sensitivity to various environmental factors. This review article focuses on the main drawbacks of the Anammox process and evaluates the progress made to date with regard to the enrichment of AAOB and the treatment performance of the Anammox process itself. The factors affecting the nitrogen removal performance of the Anammox process, such as substrate concentration, organic matters, and variation of temperature, are also reviewed and discussed. Finally, the need for the development of long-term storage methods for AAOB is addressed.
Mostrar más [+] Menos [-]Application of Exploratory and Spatial Data Analysis (EDA-SDA) to the Investigation of Metal Contamination in Groundwater from Electric Arc Furnace Slag and Dust Texto completo
2015
Ribeiro, Leonardo Guimarães | Bacellar, Luís Almeida Prado
Electric arc furnace (EAF) dust and slag, materials which contain high metals in their composition, were improperly disposed in an industrial steel mill site between 1963 and 1999. Previous environmental investigations identified anomalous concentrations of metals in local groundwater but failed to relate these abnormalities to the disposed material or to natural geochemical processes. Aiming to identify the origin of such abnormalities, exploratory and spatial data analysis (EDA-SDA) method was applied on a hydrogeochemical data set obtained through 5 sampling campaigns in 32 groundwater monitoring wells installed upstream and downstream of the area impacted by the steel mill activities. Boxplot class-based and Eh vs. pH maps of physicochemical log-transformed data identified that wells located under the influence of EAF slag deposits in topographic hollows had lower Eh potential and increased electrical conductivity and pH, when compared to wells in the topographical nose of the surveyed area. Metal distribution maps showed that Al, Ca, K, Mg, Na, and Sr were consistently higher in topographic hollows while concentrations of Co, Cu, Cr, and Li were higher near the former steel-making plant, located in the topographical nose. Ba, Fe, Mn, and Zn, important indicators of EAF slag and dust, were observed in both topographic settings. Variable clustering was able to capture the relations among metals and thus validate the log-normalized data structure to be used into wells clustering. Clustering through the mclust algorithm carried out for two and three clusters allowed the distinction among localities that received an input of metals from dust or slag and those not influenced by either residue. This paper demonstrates that EDA-SDA is an effective method to identify areas under the influence of contamination from industrial activities from areas not affected by anthropogenic contamination.
Mostrar más [+] Menos [-]Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters Texto completo
2015
Hrynkiewicz, Katarzyna | Szymańska, Sonia | Piernik, Agnieszka | Thiem, Dominika
Saline stress is one of the most important abiotic factors limiting the growth and development of plants and associated microorganisms. While the impact of salinity on associations of arbuscular fungi is relatively well understood, knowledge of the ectomycorrhizal (EM) fungi of trees growing on saline land is limited. The main objective of this study was to determine the density and diversity of EM fungi associated with three tree species, Salix alba, Salix caprea and Betula pendula, growing in saline soil during two seasons, autumn and spring. The site was located in central Poland, and the increased salinity of the soil was of anthropogenic origin from soda production. The degree of EM colonisation of fine root tips varied between 9 and 34 % and depended on the tree species of interest (S. caprea < S. alba < B. pendula) and season (spring < autumn). Moreover, the ectomycorrhizal colonisation of B. pendula was positively correlated with pH and CaCO₃, while for S. caprea and S. alba, colonisation was associated with most of the other soil parameters investigated; e.g. salinity, Cₒᵣgand N. Analysis of EM fungi revealed four to five different morphotypes per each season: Tomentella sp. Sa-A, Hebeloma collariatum Sc-A, Geopora sp. Sc-A, Helotiales sp. Bp-A in the autumn and Tomentella sp. Sa-S, Tomentella sp. Sc-S and three morphotypes from the families Thelephoraceae and Pyronemataceae in the spring. In conclusion, the density of EM is related to the level of salinity (ECₑ), season and tree species. Tomentella spp., Hebeloma sp., Geopora sp. and Helotiales sp. are groups of species highly adapted to saline conditions.
Mostrar más [+] Menos [-]Effect of Fulvic Acid on Adsorptive Removal of Cr(VI) and As(V) from Groundwater by Iron Oxide-Based Adsorbents Texto completo
2015
Uwamariya, V. | Petrusevski, B. | Slokar, Y. M. | Aubry, C. | Lens, P. N. L. | Amy, G. L.
Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface.
Mostrar más [+] Menos [-]Does the Function of Railway Infrastructure Determine Qualitative and Quantitative Composition of Contaminants (PAHs, Heavy Metals) in Soil and Plant Biomass? Texto completo
2015
Mętrak, Monika | Chmielewska, Monika | Sudnik-Wójcikowska, Barbara | Wiłkomirski, Bogusław | Staszewski, Tomasz | Suska-Malawska, Małgorzata
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals are the two most important groups of pollutants associated with rail transport. Both have a serious negative impact on the natural environment, including human health and degradation of sensitive ecosystems. In our study, apart from qualitative and quantitative analysis of the main PAHs and heavy metals associated with rail, we tried to assess composition of specific compounds related to functional areas of railway infrastructure and to distinguish potential chemical markers which can be used for identification of pollution. Moreover, we evaluated the applicability of plants overgrowing railway infrastructure as bioindicators of rail-associated pollution. Though we confirmed that high amounts of PAHs and heavy metals in soil are characteristic for intensively used railway infrastructure, we found no typical pollution profiles for the differently used areas (i.e. platforms, sidings, cleaning bays). The major source of these contaminants is petroleum products used in conservation of railway infrastructure and rolling stock. As far as the use of plants overgrowing railway infrastructure as bioindicators of rail-associated pollution is concerned, it is rather limited, due to frequent application of herbicides for security and track stability reasons.
Mostrar más [+] Menos [-]Rhamnolipid Transport in Biochar-Amended Agricultural Soil Texto completo
2015
Vu, Kien Anh | Tawfiq, Kamal | Chen, Gang
Rhamnolipid is a biosurfactant produced by several Pseudomonas species, and can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid is believed to have minimal adverse impact on the soil and groundwater after usage. Applications of rhamnolipid to improve irrigation in agricultural soils thus have obvious advantages over other chemical wetting agents, especially under drought conditions. Due to global warming, soil amendment with biochar has been commonly practiced in agricultural soils to increase the soil water-holding capacity. As such, rhamnolipid transport in biochar-amended agricultural soils needs to be characterized. In this research, we found that rhamnolipid transport in biochar-amended agricultural soils was hindered by retardation (equilibrium adsorption) and deposition (kinetic adsorption), which was well represented by the advection-dispersion equation based on a local equilibrium assumption. A linear equilibrium adsorption was assumed in the advection-dispersion equation simulation, which was proved to be acceptable by studying the breakthrough curves. Both rhamnolipid equilibrium adsorption and kinetic adsorption increased with the increase of the biochar content in the agricultural soil.
Mostrar más [+] Menos [-]