Refinar búsqueda
Resultados 171-180 de 4,302
Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field
2017
ur Rehman, Muhammad Zia | Khalid, Hinnan | Akmal, Fatima | Ali, Shafaqat | Rizwan, Muhammad | Qayyum, Muhammad Farooq | Iqbal, Muhammad | Khalid, Muhammad Usman | Azhar, Muḥammad
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Mostrar más [+] Menos [-]The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures
2017
Dauvin, Jean-Claude | Bakalem, Ali | Baffreau, Alexandrine | Delecrin, Claire | Bellan, Gérard | Lardicci, Claudio | Balestri, Elena | Sardá, Rafael | Grimes, Samir
The Biocoenosis of Well Sorted Fine Sands (WSFS) (SFBC, Sables Fins Bien Calibrés in French) is a Mediterranean community very well delimited by bathymetry (2–25 m) and sedimentology (>90% of fine sand) occurring in zones with relatively strong hydrodynamics. In this study focused on sites located along the Algerian, French, Italian and Spanish coasts of the Western Basin of the Mediterranean Sea (WBMS) we aim to compare the structure, ecological status and diversity of the macrofauna of the WSFS and examine the effects of recent human pressures on the state of this shallow macrobenthic community. We assess the ecological status and functioning of these WSFS using three categories of benthic indices: a) five indices based on classification of species into ecological groups, AMBI, BO2A, BPOFA, IQ and IP, b) the ITI index based on classification of species in trophic groups, and c) the Shannon H’ index, and the Biological Traits Analysis (BTA), which is an alternative method to relative taxon composition analysis and integrative indices. Cluster analyses show that each zone show a particular taxonomic richness and dominant species. The seven benthic indices reveal that the macrobenthos of the WSFS of the four coastal zones show good or high Quality Status, except for one location on the Algerian coast (the Djendjen site) in 1997. BTA highlights the presence of three groups of species: 1) typical characteristic species; 2) indicator species of enrichment of fine particles and organic matter, and 3) coarse sand species which are accessorily found on fine sand. Finally, the WSFS which are naturally subject to regular natural physical perturbations show a high resilience after human pressures but are very sensitive to changes in the input of organic matter.
Mostrar más [+] Menos [-]Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures
2017
Calvete-Sogo, H. | González Fernández, I. | García-Gómez, H. | Alonso, R. | Elvira, S. | Sanz, J. | Bermejo-Bermejo, V.
Ozone (O3) critical levels (CLe) are still poorly developed for herbaceous vegetation. They are currently based on single species responses which do not reflect the multi-species nature of semi-natural vegetation communities. Also, the potential effects of other factors like the nitrogen (N) input are not considered in their derivation, making their use uncertain under natural conditions.Exposure- and dose-response relationships were derived from two open-top chamber experiments exposing a mixture of 6 representative annual Mediterranean pasture species growing in natural soil to 4 O3 fumigation levels and 3 N inputs. The Deposition of O3 and Stomatal Exchange model (DO3SE) was modified to account for the multi-species nature of the canopy following a big-leaf approach. This new approach was used for estimating a multi-species phytotoxic O3 dose (PODy-MS). Response relationships were derived based on O3 exposure (AOT40) and flux (PODy-MS) indices.The treatment effects were similar in the two seasons: O3 reduced the aboveground biomass growth and N modulated this response. Gas exchange rates presented a high inter-specific variability and important inter-annual fluctuations as a result of varying growing conditions during the two years. The AOT40-based relationships were not statistically significant except when the highest N input was considered alone. In contrast, PODy-MS relationships were all significant but for the lowest N input level. The influence of the N input on the exposure- and dose-response relationships implies that N can modify the O3 CLe. However, this is an aspect that has not been considered so far in the methodologies for establishing O3 CLe. Averaging across N input levels, a multi-species O3 CLe (CLef-MS) is proposed POD1-MS = 7.9 mmol m⁻², accumulated over 1.5 month with a 95% confidence interval of (5.9, 9.8). Further efforts will be needed for comparing the CLef-MS with current O3 CLef based on single species responses.
Mostrar más [+] Menos [-]Bioconcentration of polycyclic musks in fathead minnows caged in a wastewater effluent plume
2017
Lefebvre, Claudine | Kimpe, Linda E. | Metcalfe, Christopher D. | Trudeau, Vance L. | Blais, Jules M.
The synthetic polycyclic musks HHCB (Galaxolide®) and AHTN (Tonalide®) were monitored in fathead minnows (FHMs) caged for a month at various locations in the North Saskatchewan River (NSR), upstream and downstream of the Gold Bar wastewater treatment plant that serves the city of Edmonton, AB, Canada. In addition, the distribution of these musk compounds in the river was predicted using the fugacity-based Quantitative Water Air Sediment Interface (QWASI) model. In FHMs caged 0.15 km downstream of the wastewater outfall, mean concentrations of HHCB and AHTN were 7.4 and 0.4 μg g−1 wet weight, respectively. These are among the highest reported concentrations of these musk compounds in fish exposed to treated wastewater. The musk concentrations in FHMs were significantly lower further downstream of the outfall. High bioconcentration factors (BCFs) in FHMs that exceeded 104 higher than estimated concentrations in water indicated that there were low rates of biotransformation of the musks in the fish. In the FHMs caged at the site closest to the wastewater outfall, HHCB concentrations in FHMs were comparable to the body burdens that have been reported to moderate expression of vitellogenin in female rainbow trout, indicating that fish in the NSR downstream of the wastewater outfall may be at risk of anti-estrogenic effects. The QWASI model applied to six individual river sections of the NSR predicted that the largest fluxes of HHCB and AHTN would be for downstream transport in water, which explains why FHMs accumulated elevated concentrations of the musks at the furthest downstream site, 9.9 km from the wastewater discharge.
Mostrar más [+] Menos [-]Health conditions in rural areas with high livestock density: Analysis of seven consecutive years
2017
van Dijk, Christel E. | Zock, Jan-Paul | Baliatsas, Christos | Smit, Lidwien A.M. | Borlée, Floor | Spreeuwenberg, Peter | Heederik, Dick | Yzermans, C Joris
Previous studies investigating health conditions of individuals living near livestock farms generally assessed short time windows. We aimed to take time-specific differences into account and to compare the prevalence of various health conditions over seven consecutive years. The sample consisted of 156,690 individuals registered in 33 general practices in a (rural) area with a high livestock density and 101,015 patients from 23 practices in other (control) areas in the Netherlands. Prevalence of health conditions were assessed using 2007–2013 electronic health record (EHR) data. Two methods were employed to assess exposure: 1) Comparisons between the study and control areas in relation to health problems, 2) Use of individual estimates of livestock exposure (in the study area) based on Geographic Information System (GIS) data. A higher prevalence of chronic bronchitis/bronchiectasis, lower respiratory tract infections and vertiginous syndrome and lower prevalence of respiratory symptoms and emphysema/COPD was found in the study area compared with the control area. A shorter distance to the nearest farm was associated with a lower prevalence of upper respiratory tract infections, respiratory symptoms, asthma, COPD/emphysema, allergic rhinitis, depression, eczema, vertiginous syndrome, dizziness and gastrointestinal infections. Especially exposure to cattle was associated with less health conditions. Living within 500m of mink farms was associated with increased chronic enteritis/ulcerative colitis. Livestock-related exposures did not seem to be an environmental risk factor for the occurrence of health conditions. Nevertheless, lower respiratory tract infections, chronic bronchitis and vertiginous syndrome were more common in the area with a high livestock density. The association between exposure to minks and chronic enteritis/ulcerative colitis remains to be elucidated.
Mostrar más [+] Menos [-]Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake
2017
Xie, Zhengxin | Lü, Guanghua | Yan, Zhenhua | Liu, Jianchao | Wang, Peifang | Wang, Yonghua
Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19–2008 L/kg) and biota−sediment accumulation factors (median BSAFs: 0.0010–0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake.
Mostrar más [+] Menos [-]Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect
2017
Op de Beeck, Lin | Verheyen, Julie | Stoks, Robby
Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures.
Mostrar más [+] Menos [-]PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events
2017
Ming, Lili | Jin, Ling | Li, Jun | Fu, Pingqing | Yang, Wenyi | Liu, Di | Zhang, Gan | Wang, Zifa | Li, Xiangdong
Fine particle (PM2.5) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m−3 in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K+, NH4+, Cl−, NO3−, and SO42-). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH4+, NO3−, and SO42-) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days.
Mostrar más [+] Menos [-]Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen
2017
Zou, Xiaoyan | Li, Penghui | Lou, Jie | Fu, Xiaoyan | Zhang, Hongwu
Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Agdis) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag+ by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag2S due to the formation of NOM-adsorbed layers, the reduction of Ag+ by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Agdis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters.
Mostrar más [+] Menos [-]Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers
2017
Rossi, Lorenzo | Zhang, Weilan | Ma, Xingmao
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg−1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture.
Mostrar más [+] Menos [-]