Refinar búsqueda
Resultados 1711-1720 de 7,214
Spatiotemporal neural network for estimating surface NO2 concentrations over north China and their human health impact
2022
Zhang, Chengxin | Liu, Cheng | Li, Bo | Zhao, Fei | Zhao, Chunhui
Atmospheric nitrogen dioxide (NO₂) is an important reactive gas pollutant harmful to human health. The spatiotemporal coverage provided by traditional NO₂ monitoring methods is insufficient, especially in the suburban and rural areas of north China, which have a high population density and experience severe air pollution. In this study, we implemented a spatiotemporal neural network (STNN) model to estimate surface NO₂ from multiple sources of information, which included satellite and in situ measurements as well as meteorological and geographical data. The STNN predicted NO₂ with high accuracy, with a coefficient of determination (R²) of 0.89 and a root mean squared error of 5.8 μg/m³ for sample-based 10-fold cross-validation. Based on the surface NO₂ concentration determined by the STNN, we analyzed the spatial distribution and temporal trends of NO₂ pollution in north China. We found substantial drops in surface NO₂ concentrations ranging between 9.1% and 33.2% for large cities during the 2020 COVID-19 lockdown when compared to those in 2019. Moreover, we estimated the all-cause deaths attributed to NO₂ exposure at a high spatial resolution of about 1 km, with totals of 6082, 4200, and 18,210 for Beijing, Tianjin, and Hebei Provinces in 2020, respectively. We observed remarkable regional differences in the health impacts due to NO₂ among urban, suburban, and rural areas. Generally, the STNN model could incorporate spatiotemporal neighboring information and infer surface NO₂ concentration with full coverage and high accuracy. Compared with machine learning regression techniques, STNN can effectively avoid model overfitting and simultaneously consider both spatial and temporal correlations of input variables using deep convolutional networks with residual blocks. The use of the proposed STNN model, as well as the surface NO₂ dataset, can benefit air quality monitoring, forecasting, and health burden assessments.
Mostrar más [+] Menos [-]Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides
2022
Tan, Wen-Tao | Zhou, Hang | Tang, Shang-Feng | Zeng, Peng | Gu, Jiao-Feng | Liao, Bo-Han
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron–manganese oxides could be introduced into biochar. In this study, iron–manganese (Fe–Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5–10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe–Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
Mostrar más [+] Menos [-]Early pregnancy PM2.5 exposure and its inorganic constituents affect fetal growth by interrupting maternal thyroid function
2022
Zhou, Yuhan | Zhu, Qingqing | Wang, Pengpeng | Li, Jialin | Luo, Ranran | Chao, Winston | Zhang, Liyi | Shi, Huijing | Zhang, Yunhui
Early pregnancy is crucial for fetal growth. Maternal thyroid hormone is critical for fetal growth and can be disturbed under exogenous exposure. However, it's uncertain whether exposure to PM₂.₅ and inorganic constituents during early pregnancy can affect TH and fetal growth. We focused on the associations of early-pregnancy PM₂.₅ and inorganic constituents with fetal growth and maternal THs. PM₂.₅ concentration was estimated using a satellite-based spatiotemporal model. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and humerus length (HL) were measured by ultrasonography at median 15.6, 22.2, and 33.1 gestational weeks. Levels of 28 PM₂.₅ constituents were measured in a sub-group of 329 pregnancies. Maternal serum free thyroxine (fT4), free triiodothyronine, and thyroid-stimulating hormone levels were measured at 14 weeks of gestation. Mixed-effect models and multiple linear regression were applied to evaluate the associations of PM₂.₅ and its constituents with fetal growth measures. Mediation analysis was used to examine the mediating role of the THs. Results showed that each 10 μg/m³ increase in PM₂.₅ was associated with 0.20 mm reductions in BPD (95%CI: 0.33, −0.01), 0.27 mm decreases in FL (95%CI: 0.40, −0.13), and 0.36 decreases in HL (95%CI: 0.49, −0.23). Per 10 μg/m³ increment in PM₂.₅ was correlated with 5.82% decreases in the fT4 level (95% CI: 8.61%, −2.96%). FT4 accounted for 14.3% of PM₂.₅ exposure-induced change in BPD at first follow-up. Al (β = −2.91, 95%CI: 5.17, −0.66), Si (β = −1.20, 95%CI: 2.22, −0.19), K (β = −3.09, 95%CI: 5.41, −0.77), Mn (β = −47.20, 95%CI: 83.68, −10.79) and Zn (β = −3.02, 95%CI: 5.55, −0.49) were associated with decreased fetal BPD, especially in first follow-up. Zn (β = −38.12%, 95% CI: 58.52%, −8.61%) was also associated with decreased fT4 levels. Overall, early pregnancy exposure to PM₂.₅ and its constituents was associated with fetal growth restriction and decreased maternal fT4 levels might mediate the effect of PM₂.₅.
Mostrar más [+] Menos [-]Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history
2022
Liao, Jiawen | Gheissari, Roya | Thomas, Duncan C. | Gilliland, Frank D. | Lurmann, Fred | Islam, Khandaker Talat | Chen, Zhanghua
Ambient air pollutants are well-known risk factors for childhood asthma and asthma exacerbation. It is unknown whether different air pollutants individually or jointly affect pathophysiological mechanisms of asthma. In this study, we aim to integrate transcriptome and untargeted metabolome to identify dysregulated genetic and metabolic pathways that are associated with exposures to a mixture of ambient and traffic-related air pollutants among adults with asthma history. In this cross-sectional study, 102 young adults with childhood asthma history were enrolled from southern California in 2012. Whole blood transcriptome was measured with 20,869 expression signatures, and serum untargeted metabolomics including 937 metabolites were analyzed by Metabolon, Inc. Participants’ exposures to regional air pollutants (NO₂, O₃, PM₁₀, PM₂.₅) and near-roadway air pollutants averaged at one month and one year before study visit were estimated based on residential addresses. xMWAS network analysis and joint-pathway analysis were performed to identify subnetworks and genetic and metabolic pathways that were associated with exposure to air pollutants adjusted for socio-characteristic covariates. Network analysis found that exposures to air pollutants mixture were connected to 357 gene markers and 92 metabolites. One-year and one-month averaged PM₂.₅ and NO₂ were associated with several amino acids related to serine, glycine, and beta-alanine metabolism. Lower serum levels of carnosine and aspartate, which are involved in the beta-alanine metabolic pathway, as well as choline were also associated with worse asthma control (p < 0.05). One-year and one-month averaged PM₁₀ and one-month averaged O₃ were associated with higher gene expression levels of HSPA5, LGMN, CTSL and HLA-DPB1, which are involved in antigen processing and presentation. These results indicate that exposures to various air pollutants are associated with altered genetic and metabolic pathways that affect anti-oxidative capacity and immune response and can potentially contribute to asthma-related pathophysiology.
Mostrar más [+] Menos [-]The evolving role of weather types on rainfall chemistry under large reductions in pollutant emissions
2022
Tso, Chak-Hau Michael | Monteith, D. T. | Scott, Tony | Watson, Helen | Dodd, Beverley | Pereira, M Glória | Henrys, Peter | Holloway, Michael | Rennie, Susannah | Lowther, Aaron | Watkins, John | Killick, Rebecca | Blair, Gordon
Long-term change and shorter-term variability in the atmospheric deposition of pollutants and marine salts can have major effects on the biogeochemistry and ecology of soils and surface water ecosystems. In the 1980s, at the time of peak acid deposition in the UK, deposition loads were highly dependent on prevailing weather types, and it was postulated that future pollution recovery trajectories would be partly dependent on any climate change-driven shifts in weather systems. Following three decades of substantial acidic emission reductions, we used monitoring data collected between 1992 and 2015 from four UK Environmental Change Network (ECN) sites in contrasting parts of Great Britain to examine the trends in precipitation chemistry in relation to prevailing weather conditions. Weather systems were classified on the basis of Lamb weather type (LWT) groupings, while emissions inventories and clustering of air mass trajectories were used to interpret the observed patterns. Concentrations of ions showed clear differences between cyclonic-westerly-dominated periods and others, reflecting higher marine and lower anthropogenic contributions in Atlantic air masses. Westerlies were associated with higher rainfall, higher sea salt concentrations, and lower pollutant concentrations at all sites, while air mass paths exerted additional controls. Westerlies therefore have continued to favour higher sea salt fluxes, whereas emission reductions are increasingly leading to positive correlations between westerlies and pollutant fluxes. Our results also suggest a shift from the influence of anthropogenic emissions to natural emissions (e.g., sea salt) and climate forcing as they are transported under relatively cleaner conditions to the UK. Westerlies have been relatively frequent over the ECN monitoring period, but longer-term cyclicity in these weather types suggests that current contributions to precipitation may not be sustained over coming years.
Mostrar más [+] Menos [-]Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil
2022
Zhang, Lijie | Philben, Michael | Taş, Neslihan | Johs, Alexander | Yang, Ziming | Wullschleger, Stan D. | Graham, David E. | Pierce, Eric M. | Gu, Baohua
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
Mostrar más [+] Menos [-]Adverse environmental effects of disposable face masks due to the excess usage
2022
Hui Li, Alice Sim | Sathishkumar, Palanivel | Selahuddeen, Muhammad Luqman | Asyraf Wan Mahmood, Wan M. | Zainal Abidin, Mohamad Hamdi | Wahab, Roswanira Abdul | Mohamed Huri, Mohamad Afiq | Abdullah, Faizuan
The widespread use of disposable face masks as a preventative strategy to address transmission of the SARS-CoV-2 virus has been a key environmental concern since the pandemic began. This has led to an unprecedented new form of contamination from improperly disposed masks, which liberates significant amounts of heavy metals and toxic chemicals in addition to volatile organic compounds (VOCs). Therefore, this study monitored the liberation of heavy metals, VOCs, and microfibers from submerged disposable face masks at different pH (4, 7 and 12), to simulate distinct environmental conditions. Lead (3.238% ppb), cadmium (0.672 ppb) and chromium (0.786 ppb) were found in the analyzed leachates. By pyrolysis, 2,4-dimethylhept-1-ene and 4-methylheptane were identified as the VOCs produced by the samples. The chemically degraded morphology in the FESEM images provided further evidence that toxic heavy metals and volatile organic compounds had been leached from the submerged face masks, with greater degradation observed in samples submerged at pH 7 and higher. The results are seen to communicate the comparable danger of passively degrading disposable face masks and the release of micro- or nanofibers into the marine environment. The toxicity of certain heavy metals and chemicals released from discarded face masks warrants better, more robust manufacturing protocols and increased public awareness for responsible disposal to reduce the adverse impact on ecology and human health.
Mostrar más [+] Menos [-]Modulation of osmoprotection and antioxidant defense by exogenously applied acetate enhances cadmium stress tolerance in lentil seedlings
2022
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Fujita, Masayuki | Tran, Lam-son Phan
To examine the potential role of acetate in conferring cadmium (Cd) stress tolerance in lentil (Lens culinaris), several phenotypical and physio-biochemical properties have been examined in Cd-stressed lentil seedlings following acetate applications. Acetate treatment inhibited the translocation of Cd from roots to shoots, which resulted in a minimal reduction in photosynthetic pigment contents. Additionally, acetate-treated lentil showed higher shoot (1.1 and 11.72%) and root (4.98 and 30.64%) dry weights compared with acetate-non-treated plants under low-Cd and high-Cd concentrations, respectively. Concurrently, acetate treatments increase osmoprotection under low-Cd stress through proline accumulation (24.69%), as well as enhancement of antioxidant defense by increasing ascorbic acid content (239.13%) and catalase activity (148.51%) under high-Cd stress. Acetate-induced antioxidant defense resulted in a significant diminution in hydrogen peroxide, malondialdehyde and electrolyte leakage in Cd-stressed lentil seedlings. Our results indicated that acetate application mitigated oxidative stress-induced damage by modulating antioxidant defense and osmoprotection, and reducing root-to-shoot Cd transport. These findings indicate an important contribution of acetate in mitigating the Cd toxicity during growth and development of lentil seedlings, and suggest that the exogenous applications of acetate could be an economical and new avenue for controlling heavy metal-caused damage in lentil, and potentially in many other crops.
Mostrar más [+] Menos [-]Substantial yield reduction in sweet potato due to tropospheric ozone, the dose-response function
2022
Holder, Amanda J. | Hayes, Felicity
Impacts of tropospheric ozone on sweet potato (Ipomoea batatas) are poorly understood despite being a staple food grown in locations deemed at risk from ozone pollution. Three varieties of sweet potato were exposed to ozone treatments (peaks of: 30 (Low), 80 (Medium), and 110 (High) ppb) using heated solardomes. Weekly measurements of stomatal conductance (gs) and chlorophyll content (CI) were used to determine physiological responses, along with final yield. gs and CI were reduced with increasing ozone exposure, but effects were partially masked due to elevated leaf senescence and turnover. Yield for the Erato orange and Murasaki varieties was reduced by ∼40% and ∼50% (Medium and High ozone treatments, respectively, vs Low) whereas Beauregard yield was reduced by 58% in both. The DO₃SE (Deposition of Ozone for Stomatal Exchange) model was parameterized for gs in response to light, temperature, vapour pressure deficit and soil water potential. Clear responses of gs to the environmental parameters were found. Yield reductions were correlated with both concentration based AOT40 (accumulated ozone above a threshold of 40 ppb) and flux based POD₆ (accumulated stomatal flux of ozone above a threshold of 6 nmol m⁻ ² s⁻ ¹) metrics (R² 0.66 p = 0.01; and R² 0.44 p = 0.05, respectively). A critical level estimate of a POD₆ of 3 (mmol m⁻² Projected Leaf Area⁻¹) was obtained using the relationship. This study showed that sweet potato yield was reduced by ozone pollution, and that stomatal conductance and chlorophyll content were also affected. Results from this study can improve model predictions of ozone impacts on sweet potato together with associated ozone risk assessments for tropical countries.
Mostrar más [+] Menos [-]Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides
2022
Yang, Yadong | Piao, Yunxian | Wang, Ruofan | Su, Yaoming | Qiu, Jinrong | Liu, Na
In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO₃, KOH and H₂O₂ with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS⁻ and S²⁻ mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.
Mostrar más [+] Menos [-]