Refinar búsqueda
Resultados 1871-1880 de 7,214
Mercury concentration and speciation in benthic organisms from Isfjorden, Svalbard
2022
Korejwo, Ewa | Saniewska, Dominika | Bełdowski, Jacek | Balazy, Piotr | Saniewski, Michał
Polar regions are an important part of the global mercury cycle and interesting study sites due to different possible mercury sources. The full understanding of mercury transformations in the Arctic is difficult because this region is the systems in transition –where the effects of the global climate change are the most prominent. Benthic organisms can be valuable bioindicators of heavy metal contamination. In July 2018, selected benthic organisms: macroalgae, brittle stars, sea urchins, gastropods, and starfish were collected in Isfjorden, Spitsbergen. Two of the sampling stations were located inside the fjord system and one at the entrance to the fjord. The results showed that the starfish were the most contaminated with mercury. Total mercury concentrations in these organisms were at least 10 times higher than in other organisms. However, they effectively deal with mercury by transporting it to hard tissue. The dominant form of mercury was the labile form.
Mostrar más [+] Menos [-]Temporal changes of plastic litter and associated encrusting biota: Evidence from Central Italy (Mediterranean Sea)
2022
Cesarini, Giulia | Secco, Silvia | Battisti, Corrado | Questino, Beatrice | Marcello, Leonardo | Scalici, Massimiliano
We investigated the temporal changes from spring to summer of the stranded litter and the composition of plastic encrusting biota along an Italian beach. Our findings highlight a higher quantity of litter (average value 1510.67 ± 581.27 items) in spring, particularly plastic material with a composition driven by currents, winds and waves transported from rivers to sea. During summer the source was caused by anti-social behaviours (e.g. cigarettes). Regarding the plastic size, the most is macroplastic (85.96 %), followed by mesoplastic (13.74 %) and megaplastic (0.30 %) overall, and no seasonal trend was observed. Concerning the encrusting biota, Mollusca was the most frequent phylum found on plastic beach litter, whereas Porifera the most abundant overall. During spring a greater abundance of individuals was recorded compared to summer. The trend of taxa richness was decreasing from spring to summer. Arthropoda, Porifera and Mollusca phyla were significantly more abundant in spring, while Algae in summer.
Mostrar más [+] Menos [-]Hypoxia formation in the East China Sea by decomposed organic matter in the Kuroshio Subsurface Water
2022
Wang, Wentao | Yu, Zhiming | Song, Xiuxian | Chi, Lianbao | Zhou, Peng | Wu, Zaixing | Yuan, Yongquan
Although internal decomposition of organic matter (OM) in the Kuroshio Subsurface Water (KSSW) is a crucial factor for hypoxia formation in the East China Sea (ECS), the seasonal source and contributions of this OM remain debated. This study applied datasets collected in June and October 2015 to discuss these issues qualitatively and quantitatively. According to the variations in several parameters along the KSSW route, N₂ fixation signals related to decomposed OM were apparent in the southern ECS during June, while terrestrial input signals were revealed in the northern ECS during June and most of the ECS during October. The terrestrial input contributed 47% of the decomposed OM near the historic hypoxic area in June, indicating that the terrestrial and marine sources contributed almost equally to the development of ECS hypoxia. These results provide vital information for understanding the mechanism of hypoxia formation driven by eutrophication and oceanic circulation.
Mostrar más [+] Menos [-]A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health
2022
Sangkham, Sarawut | Faikhaw, Orasai | Munkong, Narongsuk | Sakunkoo, Pornpun | Arunlertaree, Chumlong | Chavali, Murthy | Mousazadeh, Milad | Tiwari, Ananda
Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.
Mostrar más [+] Menos [-]Monthly and seasonal variations in the surface carbonate system and air–sea CO2 flux of the Yellow Sea
2022
Ko, Young Ho | Seok, Min-Woo | Jeong, Jin-Yong | Noh, Jae-Hoon | Jeong, Jongmin | Mo, Ahra | Kim, Tae-Wook
Surface carbonate chemistry in the Yellow Sea was investigated based on discrete seawater samples collected from 2017 to 2020 at the Socheongcho Ocean Research Station (S-ORS; 37.423°N, 124.738°E). Records of carbon parameters, including seawater CO₂ partial pressure (pCO₂), revealed considerable seasonal variations, with amplitudes comparable to those observed across the western part of the Yellow Sea. The study site acted as a modest sink (−0.13 mol C m⁻² yr⁻¹) for atmospheric CO₂. Biological processes (primary production and respiration) and physical conditions (temperature and degree of stratification) determined seawater pCO₂, which fluctuated on an intraseasonal timescale between oversaturated and undersaturated with respect to atmospheric pCO₂. Variation in pCO₂ was significant in summer, depending on the biological carbon drawdown and tidal mixing-induced upwelling (increased pCO₂ up to ~1000 μatm). The intraseasonal variability in seawater pCO₂ may bias estimated air–sea CO₂ fluxes, if measurements with a coarser (seasonal) time resolution are used.
Mostrar más [+] Menos [-]Algal turf structure and composition vary with particulate loads on coral reefs
2022
Arjunwadkar, Chaitanya V. | Tebbett, Sterling B. | Bellwood, David R. | Bourne, David G. | Smith, Hillary A.
Algal turfs trap and retain particulates, however, little is known about the relationship between particulate accumulation and taxonomic composition of algal turfs. We investigated how particulate mass related to algal turf structure (length and density) and community composition (taxonomic and functional) on two disparate reefs. Particulate mass was positively related to algal turf length. By contrast, the relationship between particulate mass and turf density was more complex and followed a negative parabolic shape; density increased with particulate mass before stabilising and then declining. Community analyses showed taxonomic, but not functional group compositions differed significantly between reefs and with increasing particulate mass. Our results suggest high loads of particulates accumulated in algal turfs are related to a longer, lower density turf structure, typified by filamentous forms such as Cladophora. Changes in algal turf structure and composition could have a variety of bottom-up influences on coral reef ecosystems.
Mostrar más [+] Menos [-]Marine biofouling organisms on beached, buoyant and benthic plastic debris in the Catalan Sea
2022
Subías-Baratau, Arnau | Sanchez-Vidal, Anna | Di Martino, Emanuela | Figuerola, Blanca
Plastic debris provides long-lasting substrates for benthic organisms, thus acting as a potential vector for their dispersion. Its interaction with these colonizers is, however, still poorly known. This study examines fouling communities on beached, buoyant and benthic plastic debris in the Catalan Sea (NW Mediterranean), and characterizes the plastic type. We found 14 specimens belonging to two phyla (Annelida and Foraminifera) on microplastics, and more than 400 specimens belonging to 26 species in 10 phyla (Annelida, Arthropoda, Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Porifera and Sipuncula) on macroplastics. With 15 species, bryozoans are the most diverse group on plastics. We also report 17 egg cases of the catshark Scyliorhinus sp., and highlight the implications for their dispersal. Our results suggest that plastic polymers may be relevant for distinct fouling communities, likely due to their chemical structure and/or surface properties. Our study provides evidence that biofouling may play a role in the sinking of plastic debris, as the most abundant fouled plastics had lower densities than seawater, and all bryozoan species were characteristic of shallower depths than those sampled. More studies at low taxonomic level are needed in order to detect new species introduction and potential invasive species associated with plastic debris.
Mostrar más [+] Menos [-]De- coupled phytoplankton growth and microzooplankton grazing in a simulated oil spill event in mesocosms
2022
Microzooplankton (<200 μm) are essential intermediates between primary production and organisms at the higher trophic levels. Their ecological functions could be substantially affected by crude oil pollution. A natural plankton community was exposed to 10 μL L⁻¹ of chemically dispersed crude oil (DOil) in outdoor mesocosms for 7 days, with control (Ctrl) mesocosms set up for comparison. Dilution experiments were conducted to estimate the grazing rates of microzooplankton on the 2nd and 6th days of the pollutants exposure. Results showed 0.36–2.28 d⁻¹ microzooplankton grazing rates in the Ctrl mesocosms on both days but negative rates in the DOil mesocosms. A significant linear relationship between in situ phytoplankton growth and microzooplankton grazing rates was found in the Ctrl treatment but not in the DOil treatment. This suggests a de-coupling between phytoplankton growth and microzooplankton and the potential for the formation of phytoplankton blooms in seawater after an oil spill event.
Mostrar más [+] Menos [-]Effect of dispersants on bacterial colonization of oil droplets: A microfluidic approach
2022
Bacteria biodegradation of immiscible oil requires cell-droplet encounters, surface attachment, and hydrocarbon metabolism. Chemical dispersants are applied to oil spills to reduce the mean dispersed droplet size, thereby increasing the available surface area for attachment, in attempts to facilitate bacterial biodegradation. However, their effectiveness remains contentious as studies have shown that dispersants can inhibit, enhance, or have no effect on biodegradation. Therefore, questions remain on whether dispersants affect surface attachment or cell viability. Here, using microfluidics and time-lapse microscopy, we directly observe the attachment and growth of the marine bacterium, Alcanivorax borkumensis, on stationary crude oil droplets (5 μm <R < 150 μm) in the presence of Corexit 9500. We show that the average colonization time, or the time comprised of encounters, attachment, and growth, is dependent on droplet size and primarily driven by diffusive encounters. Our results suggest that dispersants do not inhibit or enhance these biophysical processes.
Mostrar más [+] Menos [-]Low quantities of marine debris at the northern Ningaloo Marine Park, Western Australia, influenced by visitation and accessibility
2022
Marine debris (MD) is a serious environmental concern globally. Yet, few studies have reported on MD in sanctuary zones of the Indian Ocean. Consequently, coastal transects were conducted to determine MD quantity, composition and distribution at northern Ningaloo Marine Park, Western Australia. Debris density ranged between 0.004 and 0.02 items m⁻² with the greatest density near Exmouth township. Composition was predominantly plastic (61%) with fishing-related items (25.5%) and plastic fragments/remnants (16%) the most numerous overall. Land-based and general sourced MD accounted for 88% of all debris. Debris levels were significantly lower at sites with higher visitation and increased distance from access points. There was no significant difference between sanctuary and non-sanctuary zones. Although not immune to MD, this study suggests its remote location, environmental awareness and management strategies implemented at Ningaloo Marine Park may be key to its low MD levels.
Mostrar más [+] Menos [-]