Refinar búsqueda
Resultados 221-230 de 4,043
Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta Texto completo
2016
Bai, Junhong | Jia, Jia | Zhang, Guangliang | Zhao, Qingqing | Lu, Qiongqiong | Cui, Baoshan | Liu, Xinhui
Sediment samples were collected to a depth of 60 cm along a 350-m sampling belt in a short-term-flooding riparian wetland in the Yellow River Delta of China in three sampling seasons. Contents of heavy metals were determined to investigate their spatial and temporal distributions, sources and ecotoxities. Our results showed that As contents in the top 20 cm sediments increased before decreasing along the sampling belt in summer, whereas they kept stable before increasing in fall and spring. Cd contents increased along the sampling belt in three sampling seasons, whereas Ni and Cr generally exhibited a decreasing tendency. Comparatively, Cu, Pb and Zn consistently increased at the first 50 m distance and then decreased before increasing from the distance of 150 m in summer and fall and increased to the maximum at the distance of 250 m and then showed a decrease in spring. Two “hotspots” of heavy metal accumulation in sediment cores along the belt were observed at the distance from 50 to 100 m in summer and at the distance from 200 to 300 m in spring. Most of sediment samples contained higher heavy metals in excess of threshold effect levels except for Zn and Pb in three sampling seasons and the values of toxic units in more than 30% of sediment samples exceeded 4 in summer. As, Ni and Cr had relatively higher contribution to the values of toxic units compared with other heavy metals in three sampling seasons. Multivariance analysis showed that As and Cd might originate from the same source and Cu, Zn, Cr, Pb and Ni might derive from another similar source. Cd was significantly correlated with salinity (p < 0.01) and pH (p < 0.05). Meanwhile, these heavy metals were also significantly correlated with other properties such as S, Al, TP, SOM and Silt + Clay.
Mostrar más [+] Menos [-]Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling Texto completo
2016
Sun, Kai | Liang, Shangtao | Kang, Fuxing | Gao, Yanzheng | Huang, Qingguo
Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and 13C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and 13C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with 13C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs.
Mostrar más [+] Menos [-]Application of plow-tillage as an innovative technique for eliminating overwintering cyanobacteria in eutrophic lake sediments Texto completo
2016
Zhou, Qi-Lin | Liu, Cheng | Fan, Chengxin
Surface sediment in eutrophic lakes is both a destination and a habitat for overwintering cyanobacteria. The resuspension and recovery of viable, overwintering cyanobacteria from the surface sediment during warm spring weather is usually the primary stage of cyanobacterial blooms (CBs) in shallow eutrophic lakes. Therefore, the elimination of overwintering cyanobacteria in sediment is vital to control CBs. In the present study, sediment plow-tillage (PT) was introduced as an innovative technique for eliminating overwintering cyanobacteria in sediments from Lake Chaohu. Four depths of PT (2, 5, 10, and 15 cm) were tested during the 42-day experiment. The results showed that rapid cell death during the first 0–7 d after PT was accompanied by high oxygen uptake rates. The viable cells in deeper sediment died more quickly and at a higher rate after PT. A PT depth of >10 cm effectively eliminated viable cyanobacteria (with a removal rate of 82.8%) from the sediment and prevented their resuspension. The activity of the viable cyanobacteria also decreased quickly as cyanobacteria were eliminated. It appears that the dark, anoxic environment of the deeper sediment after PT was responsible for the elimination of viable cells. Although high release rates of nitrogen and phosphorus were found to accompany the dying and decomposition of cyanobacteria during days 0–7 of the experiment, greater depth of PT was found to decrease nutrient concentrations in the overlying water. In conclusion, we recommend sediment PT as a new technique for eliminating overwintering algae in sediments. However, the release of nutrients from the sediment and the in situ control of CBs in lakes after PT should be further studied.
Mostrar más [+] Menos [-]Occurrence, distribution and source apportionment of polychlorinated naphthalenes (PCNs) in sediments and soils from the Liaohe River Basin, China Texto completo
2016
Li, Fang | Jin, Jing | Gao, Yuan | Geng, Ningbo | Tan, Dongqin | Zhang, Haijun | Ni, Yuwen | Chen, Jiping
The occurrence and spatial distribution of polychlorinated naphthalenes (PCNs) were investigated in sediments, upland and paddy soils from the Liaohe River Basin. Concentrations of ΣPCNs were in the range of 0.33–12.49 ng g⁻¹ dry weight (dw) in sediments and 0.61–6.60 ng g⁻¹ dw in soils, respectively. Tri-CNs and tetra-CNs were the dominating homologues. An increasing trend of PCNs contamination was found in sediments with the rivers flowing through industrial areas and cities. Soils collected near cities exhibited higher abundance of PCNs than that of rural areas. The distribution of PCNs was related to the local industrial activities, rather than total organic carbon. Positive matrix factorization (PMF) was used for the source apportionment of PCNs in sediments and paddy soils. The result of PMF indicated that PCNs in sediments and paddy soils were mainly from the industrial processes, with additional contributions from the historical use of Halowax 1014 and atmospheric deposition.
Mostrar más [+] Menos [-]Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results Texto completo
2016
Pedà, Cristina | Caccamo, Letteria | Fossi, Maria Cristina | Gai, Francesco | Andaloro, Franco | Genovese, Lucrezia | Perdichizzi, Anna | Romeo, Teresa | Maricchiolo, Giulia
This study investigates, for the first time, the intestinal responses of European sea bass Dicentrarchus labrax chronically exposed to microplastics through ingestion. Fish (n = 162) were fed with 3 different treatment diets for 90 days: control, native polyvinyl chloride (PVC) and polluted polyvinyl chloride (PVC) pellets. Intestines were fixed and processed for histological analysis using standard techniques. Histopathological alterations were examined using a score value (from 0 to 4). The distal part of intestine in all samples proved to be the most affected by pathological alterations, showing a gradual change varying from moderate to severe related to exposure times. The histological picture that characterizes both groups especially after 90 days of exposure, suggests that the intestinal functions can be in some cases totally compromised.The worst condition is increasingly evident in the distal intestine of fish fed with polluted PVC pellets respect to control groups (p < 0.05) to different exposure times.These first results underline the need to assess the impact of increasing microplastics pollution on the marine trophic web.
Mostrar más [+] Menos [-]Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice Texto completo
2016
Li, Xinxiu | Xu, Lizhi | Zhou, Wei | Zhao, Qingya | Wang, Yaping
Microcystin-LR (MC-LR), an important variant of cyanotoxin family, was frequently encountered in the contaminated aquatic environment and taken as a potent hepatotoxin. However, a little was known on the association between the long-term MC-LR exposure and lung damage. In this study, we investigated the changes of the pulmonary histopathology, mitochondrial DNA (mtDNA) integrity and the expression of mtDNA encoded genes in the mice with chronic exposed to MC-LR at different concentrations (1, 5, 10, 20 and 40 μg/L) for 12 months. Our results showed that the long-term and persistent exposure to MC-LR disturbed the balance of redox system, influenced mtDNA stability, changed the expression of mitochondrial genes in the lung cells. Notably, MC-LR exposure influenced the level of inflammatory cytokines and resulted in thickening of the alveolar septa. In conclusion, chronic exposure to MC-LR affected mtDNA maintenance, and caused lung impairment in mice.
Mostrar más [+] Menos [-]Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways Texto completo
2016
Jin, Biao | Rolle, Massimo
The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available.
Mostrar más [+] Menos [-]Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon? Texto completo
2016
Moreno-Brush, Mónica | Rydberg, Johan | Gamboa, Nadia | Storch, Ilse | Biester, Harald
There is an ongoing debate on the fate of mercury (Hg) in areas affected by artisanal and small-scale gold mining (ASGM). Over the last 30 years, ASGM has released 69 tons of Hg into the southeastern Peruvian Amazon. To investigate the role of suspended matter and hydrological factors on the fate of ASGM-Hg, we analysed riverbank sediments and suspended matter along the partially ASGM-affected Malinowski-Tambopata river system and examined Hg accumulation in fish. In addition, local impacts of atmospheric Hg emissions on aquatic systems were assessed by analysing a sediment core from an oxbow lake. Hg concentrations in riverbank sediments are lower (20–53 ng g−1) than in suspended matter (∼400–4000 ng g−1) due to differences in particle size. Elevated Hg concentrations in suspended matter from ASGM-affected river sections (∼1400 vs. ∼30–120 ng L−1 in unaffected sections) are mainly driven by the increased amount of suspended matter rather than increased Hg concentrations in the suspended matter. The oxbow lake sediment record shows low Hg concentrations (64–86 ng g−1) without evidence of any ASGM-related increase in atmospheric Hg input. Hg flux variations are mostly an effect of variations in sediment accumulation rates. Moreover, only 5% of the analysed fish (only piscivores) exceed WHO recommendations for human consumption (500 ng g−1). Our findings show that ASGM-affected river sections in the Malinowski-Tambopata system do not exhibit increased Hg accumulation, indicating that the released Hg is either retained at the spill site or transported to areas farther away from the ASGM areas. We suspect that the fate of ASGM-Hg in such tropical rivers is mainly linked to transport associated with the suspended matter, especially during high water situations. We assume that our findings are typical for ASGM-affected areas in tropical regions and could explain why aquatic systems in such ASGM regions often show comparatively modest enrichment in Hg levels.
Mostrar más [+] Menos [-]Predicting total dissolved solids release from central Appalachian coal mine spoils Texto completo
2016
Daniels, W. L. | Zipper, C. E. | Orndorff, Z. W. | Skousen, J. | Barton, C. D. | McDonald, L. M. | Beck, M. A.
Appalachian USA surface coal mines face public and regulatory pressure to reduce total dissolved solids (TDS) in discharge waters, primarily due to effects on sensitive macroinvertebrates. Specific conductance (SC) is an accurate surrogate for TDS and relatively low levels of SC (300–500 μS cm−1) have been proposed as regulatory benchmarks for instream water quality. Discharge levels of TDS from regional coal mines are frequently >1000 μS cm−1. The primary objectives of this study were to (a) determine the effect of rock type and weathering status on SC leaching potentials for a wide range of regional mine spoils; (b) to relate leachate SC from laboratory columns to actual measured discharge SC from field sites; and (c) determine effective rapid lab analyses for SC prediction of overburden materials. We correlated laboratory unsaturated column leaching results for 39 overburden materials with a range of static lab parameters such as total-S, saturated paste SC, and neutralization potential. We also compared column data with available field leaching and valley fill discharge SC data. Leachate SC is strongly related to rock type and pre-disturbance weathering. Fine-textured and non-weathered strata generally produced higher SC and pose greater TDS risk. High-S black shales produced the highest leachate SC. Lab columns generated similar range and overall SC decay response to field observations within 5–10 leaching cycles, while actual reduction in SC in the field occurs over years to decades. Initial peak SC can be reliably predicted (R2 > 0.850; p < 0.001) by simple lab saturated paste or 1:2 spoil:water SC procedures, but predictions of longer-term SC levels are less reliable and deserve further study. Overall TDS release risk can be accurately predicted by a combination of rock type + S content, weathering extent, and simple rapid SC lab measurements.
Mostrar más [+] Menos [-]Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil Texto completo
2016
Gámiz, Beatriz | Facenda, Gracia | Celis, Rafael
Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil Texto completo
2016
Gámiz, Beatriz | Facenda, Gracia | Celis, Rafael
Although enantioselective sorption to soil particles has been proposed as a mechanism that can potentially influence the availability of individual chiral pesticide enantiomers in the environment, environmental fate studies generally overlook this possibility and assume that only biotic processes can be enantioselective, whereas abiotic processes, such as sorption, are non-enantioselective. In this work, we present direct evidence for the effect of the enantioselective sorption of a chiral pesticide in a natural soil on the availability of the single pesticide enantiomers for transport. Batch sorption experiments, with direct determination of the sorbed amounts, combined with column leaching tests confirmed previous observations that from non-racemic aqueous solutions the sorption of the chiral fungicide metalaxyl on the soil appeared to be enantioselective, and further demonstrated that the enantiomer that was sorbed to a greater extent (R-metalaxyl, Kd = 1.73 L/kg) exhibited retarded leaching compared to its optical isomer (S-metalaxyl, Kd = 1.15 L/kg). Interconversion and degradation of the pesticide enantiomers, which are potential experimental artifacts that can lead to erroneous estimates of sorption and its enantioselectivity, were discarded as possible causes of the observed enantioselective behavior. The results presented here may have very important implications for a correct assessment of the environmental fate of chiral pesticides that are incorporated into the environment as non-racemic mixtures, and also of aged chiral pesticide residues that have been transformed from racemic to non-racemic by biologically-mediated processes.
Mostrar más [+] Menos [-]Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil Texto completo
2016
Gámiz, B. | Facenda, G. | Celis, Rafael | Ministerio de Economía y Competitividad (España) | Junta de Andalucía | European Commission | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
8 páginas.-- 4 figuras.-- 4 tablas.-- referencias.-- Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.envpol.2016.03.052. | Although enantioselective sorption to soil particles has been proposed as a mechanism that can potentially influence the availability of individual chiral pesticide enantiomers in the environment, environmental fate studies generally overlook this possibility and assume that only biotic processes can be enantioselective, whereas abiotic processes, such as sorption, are non-enantioselective. In this work, we present direct evidence for the effect of the enantioselective sorption of a chiral pesticide in a natural soil on the availability of the single pesticide enantiomers for transport. Batch sorption experiments, with direct determination of the sorbed amounts, combined with column leaching tests confirmed previous observations that from non-racemic aqueous solutions the sorption of the chiral fungicide metalaxyl on the soil appeared to be enantioselective, and further demonstrated that the enantiomer that was sorbed to a greater extent (R-metalaxyl, Kd = 1.73 L/kg) exhibited retarded leaching compared to its optical isomer (S-metalaxyl, Kd = 1.15 L/kg). Interconversion and degradation of the pesticide enantiomers, which are potential experimental artifacts that can lead to erroneous estimates of sorption and its enantioselectivity, were discarded as possible causes of the observed enantioselective behavior. The results presented here may have very important implications for a correct assessment of the environmental fate of chiral pesticides that are incorporated into the environment as non-racemic mixtures, and also of aged chiral pesticide residues that have been transformed from racemic to non-racemic by biologically-mediated processes. © 2016 Elsevier Ltd. All rights reserved. | This work was financed by the Spanish Ministry of Economy and Competitiveness (MINECO Project AGL2014-51897-R) and Junta de Andalucía (Research Group AGR-264), with European FEDER funds (Operative Program 2014–2020). | Peer reviewed
Mostrar más [+] Menos [-]