Refinar búsqueda
Resultados 2441-2450 de 4,896
Association between particulate matter air pollution and cardiovascular disease mortality in Lanzhou, China
2019
Wu, Tingting | Ma, Yuan | Wu, Xuan | Bai, Ming | Peng, Yu | Cai, Weiting | Wang, Yongxiang | Zhao, Jing | Zhang, Zheng
Ambient particulate matter (PM) pollution has been linked to elevated mortality, especially from cardiovascular diseases. However, evidence on the effects of particulate matter pollution on cardiovascular mortality is still limited in Lanzhou, China. This research aimed to examine the associations of daily mean concentrations of ambient air pollutants (PM₂.₅, PMC, and PM₁₀) and cardiovascular mortality due to overall and cause-specific diseases in Lanzhou. Data representing daily cardiovascular mortality rates, meteorological factors (daily average temperature, daily average humidity, and atmospheric pressure), and air pollutants (PM₂.₅, PM₁₀, SO₂, NO₂) were collected from January 1, 2014, to December 31, 2017, in Lanzhou. A quasi-Poisson regression model combined with a distributed lag non-linear model (DLNM) was used to estimate the associations. Stratified analyses were also performed by different cause-specific diseases, including cerebrovascular disease (CD), ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure (HF). The results showed that elevated concentration of PM₂.₅, PMC, and PM₁₀ had different effects on mortality of different cardiovascular diseases. Only cerebrovascular disease showed a significant positive association with elevated PM₂.₅. Positive associations were identified between PMC and daily mortality rates from total cardiovascular diseases, cerebrovascular diseases, and ischemic heart diseases. Besides, increased concentration of PM₁₀ was correlated with increased death of cerebrovascular diseases and ischemic heart diseases. For cerebrovascular disease, each 10 μg/m³ increase in PM₂.₅ at lag4 was associated with increments of 1.22% (95% CI 0.11–2.35%). The largest significant effects for PMC on cardiovascular diseases and ischemic heart diseases were both observed at lag0, and a 10 μg/m³ increment in concentration of PMC was associated with 0.47% (95% CI 0.06–0.88%) and 0.85% (95% CI 0.18–1.52%) increases in cardiovascular mortality and ischemic heart diseases. In addition, it exhibited a lag effect on cerebrovascular mortality as well, which was most significant at lag6d, and an increase of 10 μg/m³ in PMC was associated with a 0.76% (95% CI 0.16–1.37%) increase in cerebrovascular mortality. The estimates of percentage change in daily mortality rates per 10 μg/m³ increase in PM₁₀ were 0.52% (95% CI 0.05–1.02%) for cerebrovascular disease at lag6 and 0.53% (95% CI 0.01–1.05%) for ischemic heart disease at lag0, respectively. Our study suggests that elevated concentration of atmospheric PM (PM₂.₅, PMC, and PM₁₀) in Lanzhou is associated with increased mortality of cardiovascular diseases and that the health effect of elevated concentration of PM₂.₅ is more significant than that of PMC and PM₁₀.
Mostrar más [+] Menos [-]Leaching of Free and Conjugate Natural Estrogens in Soil Monoliths
2019
Casey, Francis X. M. | Selbie, Diana | Hakk, Heldur | Richards, Karl G.
Natural free estrogens found in animal manures are potent endocrine-disrupting compounds. Environmental detections can be caused by such processes as physical and chemical non-equilibrium and colloidal or conjugate facilitate transport. Antecedent or “legacy” concentrations of estrogens resident in soil may also contribute significantly to environmental detections. The objective of this study was to measure and understand the dominant causes contributing to estrogen detections in the environment from a grazed system. To achieve this objective, the effluent of undisturbed lysimeters constructed from soils of fields grazed by dairy cows (Bos taurus) was monitored for free and conjugated estrogens. Four lysimeters were dosed with urine (Urine) and four only received water (Control). Water transfer for all lysimeters was similar, and all lysimeters were near field capacity for the duration of the experiment. Rapid transport of a conservative bromide tracer suggested that preferential flow was an important physical non-equilibrium transport process. Free estrogens and conjugated estrogens (17β-estradiol (E2), estrone (E1), 17β-estradiol-17-sulfate (E2-17S), 17β-estradiol-3-glucuronide (E2-3G), estrone-sulfate (E1-S)) were detected in the source urine (E2 = 17,248 ng/L, E1 = 1006 ng/L, E2-3G = 967 ng/L, E2-17S = 886,456 ng/L, E1-S = 1730 ng/L). These same free and conjugated estrogens, in addition to estriol (E3), were all detected frequently in both Control and Urine lysimeters (detection concentration ranks: E3 > E2-17S = E2 > E2-3G = E1 = E1-3S). Total potential estrogenicity in the effluent of the Control and Urine was also similar, indicating the presence of antecedent estrogens was the dominant contribution to estrogenic detections. Additionally, the frequent detection of conjugates in the lysimeter effluent was important, because it indicated that conjugates were stable in soil but had greater potential mobility than free estrogens.
Mostrar más [+] Menos [-]Novel Crayfish Shell Biochar Nanocomposites Loaded with Ag-TiO2 Nanoparticles Exhibit Robust Antibacterial Activity
2019
Zeng, Yifan | Xue, Yingwen | Long, Li | Yan, Jinpeng
A fast sol-dipping-gel method was applied to load Ag and TiO₂ nanoparticles on the surface of crayfish shell biochar to make an inexpensive and novel nanocomposite. Tetra-n-butyl titanate (Ti(OC₄H₉)₄) and silver nitrate (AgNO₃) were used as the nanoparticle precursors. Crayfish shell was pyrolyzed to produce the biochar host. Paper-disk diffusion method was applied to measure antibacterial activities of the nanocomposites to E. coli. The maximum loading rate of TiO₂ and Ag nanoparticles on the biochar reached 7.54% and 3.20%, respectively. Results of long-term antibacterial effect experiment showed that the Ag-TiO₂-biochar had robust antibacterial activity and could be reused for multiple times. The inactivation of E. coli of initial concentration of 10⁵ CFU/mL by Ag-TiO₂-biochar under solar light reached around 99% of sterilization ratio in 5 min. In addition, the antibacterial ability of the nanocomposite was better in light than that in dark due to the presence of TiO₂. Findings of this study suggest that the novel nanocomposite is a promising material for water treatment units and household water purifiers.
Mostrar más [+] Menos [-]Distributions and Compositions of Brominated Diphenyl Ethers-209 in Pine Seedlings Inoculated with Ectomycorrhizal Fungi
2019
Wen, Zhugui | Chen, Mengyu | Lu, Huilong | Huang, Shiqi | Xing, Jincheng | Hong, Lizhou | Chen, Yahua
Brominated diphenyl ethers-209 (BDE-209), a toxic and stably retardant, is a ubiquitous environmental contaminant and commonly used in daily consumer products. The Cenococcum geophilum and Laccaria amethystina were used to inoculate Japanese black pine (Pinus thunbergii Parl) seedlings, using root chamber experiments to check their potential for improving host growth and the capacity in establishing in persistent organic pollutants (POPs)-contaminated environments. The results showed that the inoculation with ectomycorrhizal (ECM) fungi significantly (p < 0.01) improved the growth and reduced the concentrations of BDE-209 in needles and stems of pine seedlings planted in polluted soils. The transfer ratio (calculated as the ratio between the concentrations in needles and roots) and the root concentration factor (calculated as the ratio of the concentration in roots to soil) decreased significantly (p < 0.01), when inoculated with ectomycorrhizal (ECM) fungi compared to without. However, inoculated with ECM fungi (EMF) increased the concentration of BDE-209 in tube soil (soil collected from tube where seedlings were grown) significantly (p < 0.01), especially C. geophilum, which has a rich mycelium system. The capability of EMF accumulation and enrichment of BDE-209 in the contaminated soil, from distance to root zone, reduced the risks of the spread and leaching of organic pollutants to the crops around. The pine inoculated with EMF can be considered to have a potential in forestation and remediating BDE-209 contaminated areas by the way of phytostabilisation pollutants.
Mostrar más [+] Menos [-]Treatment of Hexavalent Chromium Contaminated Wastewater Using Activated Carbon Derived from Coconut Shell Loaded by Silver Nanoparticles: Batch Experiment
2019
Nguyễn, Lan Hương | Nguyễn, Thị Minh Phương | Van, Huu Tap | Vũ, Xuân Hòa | Ha, Thi Lan Anh | Nguyen, Thi Hong Vien | Nguyễn, Xuân Hoàn | Nguyen, X.C.
Chromium (Cr(VI)) causes serious impacts on the environment and human. In this study, the commercial activated carbon-loaded silver nanoparticle (AgNPs-AC) was used as a new adsorbent to remove Cr(VI) from the aqueous solution. Batch adsorption experiments were conducted to evaluate the effects of pH, the initial concentration of Cr(VI), contact time, and dose of AgNPs-AC upon removal of Cr(VI) from the aqueous solution. The results showed that at pH of 4, the contact time of 150 min, 40 mg/L of initial Cr(VI), and dosage of 20 mg AgNPs-AC/25 mL were the most suitable condition for absorption of Cr(VI) onto AgNPs-AC from the aqueous solution. The maximum adsorption capacity achieved at abovementioned conditions was 27.70 mg/g. Meanwhile, the adsorption capacity of commercial activated carbon from a coconut shell obtained only 7.61 mg/g in the case where the initial Cr(VI) concentration is 10 mg/L and the contact time is 60 min. The adsorption kinetic data were found to fit best to the pseudo-second-order model with a high correlation coefficient (R² = 0.9597). The adsorption process was controlled by chemisorption due to the appearance of new chemical species on the adsorbent surface. The positively charged functional groups rapidly reduced Cr(VI) to Cr(III), and Cr(III) was subsequently adsorbed by the carboxyl group on the adsorbent’s surface. From this study, it can be concluded that AgNPs-AC is a fully promising, low-cost adsorbent in the removal of Cr(VI) from the aqueous solution.
Mostrar más [+] Menos [-]Improving the Growth of Rapeseed (Brassica chinensis L.) and the Composition of Rhizosphere Bacterial Communities through Negative Pressure Irrigation
2019
Zhao, Xiujuan | Gao, Xiang | Zhang, Shuxiang | Long, Huaiyu
Negative pressure irrigation (NPI) is a new water supply technology that can save water and improve fertilizer utilization efficiency. The objective of this study was to determine the effects of different irrigation treatments on the yield and quality of rapeseed, nitrate distribution in soil, and the composition of rhizosphere bacterial communities in a greenhouse. During the entire rapeseed growth period, NPI reduced water consumption by 23 and 23% compared to that reduced by conventional irrigation (CI) and drip irrigation (DI), and NPI improved water use efficiency (WUE) by 67 and 59% more than CI and DI, respectively. Under NPI, the soil water content remained relatively stable within the range of 9.7–11.7%, which was a lower range of variation than that under CI and DI of 8.6–13.3%. NPI significantly improved the yield, quality, and plant nutrients of rapeseed. The NO₃-N content was always lowest at the different sampling times and soil layers under the NPI-L treatment. NPI significantly increased the microbial diversity in the rhizosphere soil of rapeseed and increased the abundance of Actinobacteria while decreasing that of Proteobacteria and Acidobacteria. Simultaneously, the performance of rapeseed was better under the NPI-L fertilizer concentration (0.15%) than under NPI-H (0.20%). Eventually, the combination of the evaluated regimes demonstrated that NPI is the best irrigation technique for saving water and obtaining relatively high rapeseed yields and quality while improving nitrogen utilization and the composition of rhizosphere bacterial communities. The results of this study provide a scientific basis for planting rapeseed in agricultural facilities.
Mostrar más [+] Menos [-]Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms
2019
Liu, Fang | Fiencke, Claudia | Guo, Jianbin | Lyu, Tao | Dong, Renjie | Pfeiffer, Eva-Maria
The use of bioscrubber is attracting increasing attention for exhaust gas treatment in intensive pig farming. However, the challenge is to improve the methane (CH₄) removal efficiency as well as the possibility of pig house wastewater treatment. Three laboratory-scale bioscrubbers, each equipped with different recirculation water types, livestock wastewater (10-times-diluted pig house wastewater supernatant), a methanotroph growth medium (10-times-diluted), and tap water, were established to evaluate the performance of CH₄ removal and wastewater treatment. The results showed that enhanced CH₄ removal efficiency (25%) can be rapidly achieved with improved methanotrophic activity due to extra nutrient support from the wastewater. The majority of the CH₄ was removed in the middle to end part of the bioscrubbers, which indicated that CH₄ removal could be potentially optimised by extending the length of the reactor. Moreover, 52–86% of the ammonium (NH₄⁺-N), total organic carbon (TOC), and phosphate (PO₄³⁻-P) removal were simultaneously achieved with CH₄ removal in the present study. Based on these results, this study introduces a low-cost and simple-to-operate method to improve CH₄ removal and simultaneously treat pig farm wastewater in bioscrubbers.
Mostrar más [+] Menos [-]Gypsum Amendment to Soil and Plants Affected by Sodic Alkaline Industrial Wastewater Irrigation in Urban Agriculture of Ouagadougou, Burkina Faso
2019
Dao, Juliane | Lompo, Désiré Jean-Pascal | Stenchly, Kathrin | Haering, Volker | Marschner, Bernd | Buerkert, Andreas
Low-quality water such as sodic alkaline industrial wastewater is often used to irrigate crops of intensively managed urban gardening systems in the semi-arid tropics to help meet the fresh food demands of a rapidly increasing city population. An on-farm experiment was established to examine the effects of sodium (Na) and bicarbonate (HCO₃₋)-loaded industrial wastewater on soil and crops on the one hand, and to determine melioration effects on soil condition and plant development on the other hand. To ameliorate the sodified soil, fine-powdered gypsum (CaSO₄) was applied as soil amendment onto the upper soil (0–20 cm) before sowing of crops. Depending on soil pH and exchangeable sodium percentage (ESP), which reflected the level of soil degradation (SDL), two different amounts of gypsum were applied: 6.8 t ha⁻¹ in moderate and 10 t ha⁻¹ in high SDL plots. Subsequently rainfed maize (Zea mays L.) and irrigated spinach (Spinacia oleracea L.) under two irrigation water qualities (clean and wastewater) were cultivated. Chemical and physical soil parameters, as well as plant root density (RLD), crop yield and concentrations of major plant nutrients and Na were determined. The results showed that gypsum application reduced soil pH on average below 8 and reduced ESP below 18%. Furthermore, gypsum-treated soils showed a significant reduction of sodium absorption rate (SAR) from 14.0 to 7.9 and aggregate stability was increased from 44.2 to 51.2%. This in return diminished Na concentration in plant tissues up to 80% and significantly increased RLD of maize. Overall, calcium (Ca) addition through the gypsum amendment changed the soil cation balance by increasing the Ca:Mg ratio from 3.5 to 7.8, which likely influenced the complex interactions between competing cations at the exchange surfaces of the soil and cation uptake by plant roots.
Mostrar más [+] Menos [-]Triclosan in Treated Wastewater from a City Wastewater Treatment Plant and its Environmental Risk Assessment
2019
Mōhan, Es. | Balakrishnan, P.
Triclosan (TCS) is a potential endocrine-disrupting compound (EDC), which produces an adverse impact on aquatic life and human beings. Wastewater discharge is considered as the primary source of triclosan in water bodies. The study is aimed to investigate the occurrence and environmental risk of triclosan released by municipal wastewater treatment plants (WWTP). An analytical protocol was developed and validated to determine the presence of TCS in the samples through offline solid-phase extraction (SPE) and liquid chromatography - electron spray ionization (ESI)—quadrupole mass spectrum (LC/ESI/MS). The limit of detection and quantification of protocol was estimated as 2.8 ng/L and 6.25 ng/L, respectively. The season-wise influent and effluent samples from two WWTP in Chennai, India, were monitored. The TCS concentrations in samples were found in the range of 443 to 1757 ng/L. The Risk Quotient (RQ) method was performed to evaluate the environmental (ecotoxicological and human health) risk associated with the exposure of TCS-containing wastewater. The results of the study revealed that primary producer (algae) was highly vulnerable to exposure of TCS in the aquatic environment. The estimated daily intake of TCS was much lower than the reference dosage, and this indicates that TCS did not produce any considerable risk to human health. Also, it suggested that additional treatment was required for complete removal of triclosan residues.
Mostrar más [+] Menos [-]Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst
2019
Khan, Idrees | Sadiq, Muhammad | Khan, Ibrahim | Saeed, Khalid
Manganese dioxide nanoparticles/activated carbon (MnO₂/AC) composites and manganese dioxide nanoparticles (MnO₂ NPs) are prepared through chemical reduction method. Morphological study shows that MnO₂ NPs had cylindrical and spherical shape. The morphological study also revealed that MnO₂ NPs were well dispersed on AC while neat Mn NPs present both in dispersed and in agglomerated form. The FT-IR study confirms the synthesis of MnO₂ NPs. Zetasizer study presented that the Mn NPs had uniform size and below 100 nm in size and had zeta potential of − 20 mV, which represent its stability in the suspension form. The synthesized Mn/AC composite and Mn NPs were utilized as photocatalysts for the photodegradation of Congo red (CR) dye. The degradation study shows that MnO₂/AC composite degraded CR dye more efficiently than MnO₂ NPs under UV and normal light irradiation. The efficient degradation of dye by Mn/AC composite is due to the synergistic effect between dye adsorption on AC and rapid photodegradation by supported MnO₂ NPs. The results revealed that Mn/AC composite degraded about 98.53% of CR dye within 5 min while MnO₂ NPs degraded 66.57% of dye within the same irradiation time. The recycled catalyst also significantly degraded dye which verifies its sustainability. The effect of catalyst dosage and initial dye concentration was conducted. The degradation rate of dye was found drastically faster in tap water (in presence of catalyst), which might be due to the presence of various mineral ions in the tap water.
Mostrar más [+] Menos [-]