Refinar búsqueda
Resultados 251-260 de 4,896
Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony
2019
Sun, Qin | Ding, Shiming | Chen, Musong | Gao, Shuaishuai | Lü, Guanghua | Wu, Yuexia | Gong, Mengdan | Wang, Dan | Wang, Yan
This study assessed the effectiveness of dredging in controlling arsenic (As), selenium (Se), and antimony (Sb) contamination in sediments, by examining contaminant concentrations in sediments six years after dredging was completed. High-resolution diffusive gradients in thin films (DGT) and dialysis (HR-Peeper) techniques were used to monitor the concentrations of DGT-labile metalloids and soluble metalloids in sediments, respectively. Results revealed that dredging effectively remediated metalloid contamination in sediments only in April, July and/or January. Compared to non-dredged sediments, the concentrations of soluble and DGT-labile As, Se, and Sb in dredged sediments decreased on average by 42%, 52%, and 43% (soluble), and 54%, 50%, and 53% (DGT), respectively. The effectiveness of the dredging was primarily due to the transformation of metalloids from labile to inert fractions, which increased the ability of the sediments to retain the metalloids, and the slowed rate of resupplied metalloids from available solid pools. In contrast, negligible/negative effects of dredging were seen in October, and the concentrations of soluble and DGT-labile metalloids even increased in some profiles of dredged sediments. This was mainly caused by a release of the metalloids from algal degradation, which may offset the dredging effectiveness.
Mostrar más [+] Menos [-]Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading
2019
McIntyre, J.K. | Winters, N. | Rozmyn, L. | Haskins, T. | Stark, J.D.
Urban stormwater is a major source of chemical pollution to receiving waters. Anthropogenic materials in the built environment can be an important source of chemicals to stormwater runoff. Roofing materials can leach significant amounts of metals, which vary over the life of the roof. We report concentrations of three metals (As, Cu, Zn) leaching into runoff from experimental panels of 14 roofing materials over 4.5 years of weathering. Ten roofing materials leached metals. Several leached >10 ppb during one or more study periods. The most common correlate with metal concentration was panel age, followed by precipitation amount. Extrapolating from these observations, we estimated the loading of metals from each roofing material during the first 10 years following installation. Eight materials were predicted to leach metals above background at the end of the 10 years. In combination with information on the prevalence of different roofing materials in the Puget Sound region of the Pacific Northwest, we estimated the relative amount of metals contributed from roofing materials in this basin. Most arsenic and copper was estimated to be contributed by residential roofing; nearly all arsenic from wood shakes manufactured with copper chromated arsenic, and copper contributed mainly from treated wood shakes followed by copper granule-containing asphalt shingles. Most zinc was estimated to be contributed by commercial roofs, including Zincalume and painted metal roofs. Overall our data shows that roofing materials can be an important long-term source of As, Cu, and Zn to stormwater runoff. Compared with atmospheric deposition, roof materials were a significant source, particularly of As and Cu. To get a complete picture of metals sourced from buildings, there is a need to study whole roof systems, including gutters, downspouts, and HVAC systems, as well as metals contributed from homeowner-applied treatments to their roofs.
Mostrar más [+] Menos [-]Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil
2019
D'Alessio, Matteo | Durso, Lisa M. | Miller, Daniel N. | Woodbury, Brian | Ray, Chittaranjan | Snow, Daniel D.
The impact of commonly-used livestock antibiotics on soil nitrogen transformations under varying redox conditions is largely unknown. Soil column incubations were conducted using three livestock antibiotics (monensin, lincomycin and sulfamethazine) to better understand the fate of the antibiotics, their effect on nitrogen transformation, and their impact on soil microbial communities under aerobic, anoxic, and denitrifying conditions. While monensin was not recovered in the effluent, lincomycin and sulfamethazine concentrations decreased slightly during transport through the columns. Sorption, and to a limited extent degradation, are likely to be the primary processes leading to antibiotic attenuation during leaching. Antibiotics also affected microbial respiration and clearly impacted nitrogen transformation. The occurrence of the three antibiotics as a mixture, as well as the occurrence of lincomycin alone affected, by inhibiting any nitrite reduction, the denitrification process. Discontinuing antibiotics additions restored microbial denitrification. Metagenomic analysis indicated that Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were the predominant phyla observed throughout the study. Results suggested that episodic occurrence of antibiotics led to a temporal change in microbial community composition in the upper portion of the columns while only transient changes occurred in the lower portion. Thus, the occurrence of high concentrations of veterinary antibiotic residues could impact nitrogen cycling in soils receiving wastewater runoff or manure applications with potential longer-term microbial community changes possible at higher antibiotic concentrations.
Mostrar más [+] Menos [-]Parabens in breast milk and possible sources of exposure among lactating women in Korea
2019
Park, Na-Youn | Cho, Yoon Hee | Choi, Kyungho | Lee, Eun-hee | Kim, Yang Jee | Kim, Jung Hoan | Kho, Younglim
Parabens, broad-spectrum antimicrobial preservatives widely used in various consumer products and food, are suspected to be linked with several adverse health effects in humans, especially newborn babies, infants, and young children. While human exposure to parabens has been frequently reported by measuring the concentration of parabens in urine, similar measurements in breast milk have rarely been made. To determine paraben concentrations in breast milk and possible sources of exposure, four major parabens, including methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) were measured in breast milk samples collected from 260 lactating women in South Korea. Demographic, socioeconomic, and behavioral factors associated with the presence of parabens in breast milk were determined. EP concentrations were detected at the highest levels in breast milk samples, followed by MP, PP, and BP. Pre-pregnancy BMI, parity, use of basic skin care products, use of cosmetics, canned beverage, and type of milk consumption were associated with higher frequencies of paraben detection. In addition, type of milk, parity, and drinking status were significantly associated with the concentration of EP. Multiple regression analyses showed that colostrum and transitional milk samples had higher levels of EP than mature milk samples. The estimated daily intake of parabens in infants via breastfeeding appears to be negligible when compared to the acceptable daily intake values set forth by the European Food Safety Authority (EFSA); however, considering the vulnerability of breastfed infants and ubiquitous sources of exposure from daily use of household and personal toiletries, efforts to identify sources and mitigate exposure are warranted.
Mostrar más [+] Menos [-]Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna
2019
Schrank, Isabella | Trotter, Benjamin | Dummert, Julia | Scholz-Böttcher, Barbara M. | Löder, Martin G.J. | Laforsch, Christian
Plastic waste is continuously introduced not only into marine, but also freshwater environments, where it fragments into microplastics. Organisms may be affected by the particles themselves due to ingestion and indirectly via incorporated additives such as plasticizers, since these substances have the ability to leach out of the polymer matrix. Although it has been indicated that the likelihood of additives leaching out into the gut lumen of organisms exposed to microplastics is low, studies distinguishing between the effects of the synthetic polymer itself and incorporated additives of the same polymer are scarce. Since this is obligatory for risk assessment, we analyzed the chronic effects of flexible polyvinylchloride (PVC), a widely used polymer, containing the plasticizer diisononylphthalate (DiNP) on morphology and life history of the freshwater crustacean Daphnia magna and compared these effects with the effects of rigid PVC, lacking DiNP, as well as a glass bead control. After up to 31 days of exposure, rigid PVC and glass beads did not affect body length and relative tail spine length of D. magna, whereas flexible PVC led to an increased body length and a reduced number of offspring. None of the treatments increased the mortality significantly. We were able to show that 2.67μg/L DiNP leached out of the flexible PVC into the surrounding medium using GC-MS. Yet, we were not able to measure leachate inside the gut lumen of D. magna. The effects emerged towards the end of the experiment, due to the time dependent process of leaching. Therefore, the results highlight the relevance of long-term chronic exposure experiments, especially as leaching of additives takes time. Further, our study shows the importance to distinguish between microplastics containing leachable additives and the raw polymer in ecotoxicological testing.
Mostrar más [+] Menos [-]Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems
2019
Routti, Heli | Diot, Béatrice | Panti, Cristina | Duale, Nur | Fossi, Maria Cristina | Harju, Mikael | Kovacs, Kit M. | Lydersen, Christian | Scotter, Sophie E. | Villanger, Gro D. | Bourgeon, Sophie
Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (Odobenus rosmarus rosmarus) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations and ratio of TT4 and reverse triiodothyronine decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.
Mostrar más [+] Menos [-]Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China
2019
Li, Aili | Beek, Tim aus der | Schubert, Michael | Yu, Zhenyang | Schiedek, Thomas | Schüth, Christoph
In the present work, we analyzed the concentration patterns of 20 Polycyclic Aromatic Hydrocarbons (PAHs) in 25 surface sediments and 11 sediment cores from the northern part of Taihu Lake, China. Three of the cores were dated based on ¹³⁷Cs activity for the deposition age of the sediment. The spatial distributions of the PAH concentrations show that the inflow rivers into Zhushan Bay and Meiliang Bay were the main pathway for PAHs and sediment input to the northern part of the lake. This results in substantially higher PAH concentrations (up to 5000 ng/g) and sedimentation rates (higher than the average of 3–4 mm/a) in the area close to the river outlets. In addition, results also show that PAH concentrations in the sediments considerably increased from the early 1960s, but the decreasing concentrations in the upper layers of the sediment could be attributed to the introduction of measures on environmental improvement from ca. 2000. There were both anthropogenic and biogenic origins of perylene in the lake sediments, which were distinguished based on spatial distribution patterns and also the concentration proportions of perylene to the sum of the 20 PAHs. In the cores collected close to river outlets, the concentration proportions of perylene typically range from 0.02 to 0.18 and there are significant positive linear correlations between the concentration of perylene and three anthropogenic PAHs (Benzo[a]pyrene, Benzo[e]pyrene, Pyrene), suggesting that perylene was dominated by anthropogenic input. However, the cores collected further away from the river outlets show the concentration proportions between 0.13 and 0.96, and present significant negative correlations or no correlations between perylene and the three PAHs, suggesting that perylene was mainly formed by biogenic activities. Furthermore, the different perylene sources accompanied with the location distributions imply that anthropogenic activities could inhibit its biogenic formation.
Mostrar más [+] Menos [-]Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment
2019
Beni, Ali Aghababai | Esmaeili, Akbar
A biofilm reactor was designed with flat ceramic substrates to remove Co(II), Ni(II) and Zn(II) from industrial wastewater. The ceramics were made of clay and nano-rubber with high mechanical resistance. The surface of the ceramic substrate was modified with neutral fiber and nano-hydroxyapatite. A uniform and stable biofilm mass of 320 g with 2 mm of thickness was produced on the modified ceramic after 3 d. The micro-organisms were identified in the biofilm by polymerase chain reaction (PCR) method. Functional groups of biofilms were identified with a Fourier transform infrared spectrometer (FT-IR). Experiments were designed by central composite design (CCD) using the responsive surface method (RSM). The biosorption process was optimized at pH = 5.8, temperature = 22 °C, feed flux of heavy metal wastewater = 225 ml, substrate flow = 30 ml, and retention time = 7.825 h. The kinetic data was analyzed by pseudo first-order and pseudo second-order kinetic models. Isotherm models and thermodynamic parameters were applied to describe the biosorption equilibrium data of the metal ions on the biofilm-ceramic. The maximum biosorption efficiency and capacity of heavy metal ions were about 72% and 57.21 mg, respectively.
Mostrar más [+] Menos [-]High-rate anaerobic treatment of digestate using fixed film reactors
2019
Ülgüdür, Nilüfer | Ergüder, Tuba H. | Uludağ-Demirer, Sibel | Demirer, Göksel N.
The effluent stream of the anaerobic digestion processes, the digestate, accommodates high residual organic content that needs to be further treated before discharge. Anaerobic treatment of digestate would not only reduce the residual organic compounds in digestate but also has a potential to capture the associated biogas. High-rate anaerobic reactor configurations can treat the waste streams using lower hydraulic retention times which requires less footprint opposed to the conventional completely stirred tank reactors. This study investigated the high-rate anaerobic treatment performance and the associated biogas capture from the digestate of a manure mixture composed of 90% laying hen and 10% cattle manures in fixed-film reactors. The results indicated that it was possible to reduce total chemical oxygen demand content of the digestate by 57–62% in 1.3–1.4 days of hydraulic retention time. The corresponding biogas yields obtained were in the range of 0.395–0.430 Lbiogas/g VSadded which were found to be comparable to many raw feedstocks. Moreover, significant total phosphorus reduction (36–47%) and greenhouse gas capture (over 14.5–18.1 tCO2e/d per m3 digestate) were also recorded in the anaerobic fixed-film reactors.
Mostrar más [+] Menos [-]Assessment of the sources and inflow processes of microplastics in the river environments of Japan
2019
Kataoka, Tomoya | Nihei, Yasuo | Kudou, Kouki | Hinata, Hirofumi
The numerical and mass concentrations of microplastics collected at 36 sites on the surfaces of 29 Japanese rivers were mapped and compared with four basin characteristics (basin area, population density, and urban and agricultural ratios) and six water quality parameters (pH, biochemical oxygen demand (BOD), suspended solids (SS), dissolved oxygen (DO), total nitrogen (T-N), and total phosphorus (T-P)) in each river basin. Microplastics were found in 31 of the 36 sites, indicating that some plastics fragment into small pieces before reaching the ocean. The microplastic concentrations are significantly correlated with urbanisation and population density, indicating that the microplastic concentrations in the river depend on human activities in the river basin. Furthermore, we found a significant relationship between the numerical and mass concentrations and BOD, which is an environmental indicator of river pollution. This result demonstrates that microplastic pollution in river environments has progressed more in polluted rivers with poor water quality than in rivers with good water quality, leading to the conclusion that the sources and inflow processes of microplastics in river environments are similar to those of other pollutants. Our findings can help identify potential sources (i.e., point and non-point sources) of fragmented microplastics to improve waste management in Japan and model the transport fluxes of fragmented microplastics in Japanese rivers using water quality parameters and basin characteristics.
Mostrar más [+] Menos [-]