Refinar búsqueda
Resultados 271-280 de 5,149
Abiotic formation of organoiodine compounds by manganese dioxide induced iodination of dissolved organic matter Texto completo
2018
Hao, Zhineng | Wang, Juan | Yin, Yongguang | Cao, Dong | Liu, Jingfu
Iodination of dissolved organic matter (DOM) initiated by manganese oxide may represent an important source of organoiodine compounds (OICs) for iodide-containing waters. Here, Suwannee River natural organic matter was selected as model DOM, the OICs formation in simulated freshwater samples from iodinated DOM induced by manganese oxide (δ-MnO2) was investigated at different pHs and concentrations of iodide and δ-MnO2 by using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). While no OIC was observed in DOM control samples without δ-MnO2, hundreds of OICs were detected in the presence of δ-MnO2, suggesting the enhanced role of δ-MnO2 played in DOM iodination. The relative abundance was defined as the value of dividing the peak intensity of OICs by the highest m/z peak intensity constantly occurred in each mass spectrum, and selected as a parameter for partly reflecting the real level of OICs. The relative abundance of most OICs were around or greater than 1%, and several OICs with higher relative abundance were identified as diiodo-5-hydroxy-4-cyclopentene-1,3-dione, diiodomethane and diiodoacetic acid. The numbers of the formed OICs increased with the increase concentrations of iodide/δ-MnO2 and the decrease of pH, and nearly all OICs formed at lower levels of iodide/δ-MnO2 and/or higher pH were overlapped by that at higher levels of iodide/δ-MnO2 and/or lower pH, indicating the reliability of FT-ICR MS analysis techniques and data processing method. The OICs were formed mainly from the iodination of typical lignin-like and tannin-like compounds, as well as the precursor compounds with higher relative abundance through substitution reactions. Our findings demonstrate that the OICs formation by δ-MnO2-initiated DOM iodination should receive more attention and the concentration, exact structure and toxicity of the OICs need to be further investigated.
Mostrar más [+] Menos [-]Environmentally relevant microplastic exposure affects sediment-dwelling bivalves Texto completo
2018
Bour, Agathe | Haarr, Ane | Keiter, Steffen | Hylland, Ketil
Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4–6; 20–25 and 125–500 μm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.
Mostrar más [+] Menos [-]Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level Texto completo
2018
Bour, Agathe | Avio, Carlo Giacomo | Gorbi, Stefania | Regoli, Francesco | Hylland, Ketil
The exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures. Analysed species included fish, bivalves, echinoderms, crustaceans and polychaetes. MPs were present in all the species with a frequency up to 65% of positive individuals for some species. In most cases, 1 or 2 MPs were found per individual, but some organisms contained up to 7 particles. A total of 8 polymer typologies were identified, with PE and PP being the most common according to our extraction protocol. MP sizes ranged from 41 μm to lines as long as 9 mm. Our results indicate that occurrence of MPs in analysed biota is not influenced by organism habitat or trophic level, while characteristics and typology of polymers might be significantly affected by feeding mode of organisms.
Mostrar más [+] Menos [-]Novel in vitro method for measuring the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons using simulated human lung fluids Texto completo
2018
Yu, Yingxin | Jiang, Zi'an | Zhao, Zhishen | Chong, Dan | Li, Guiying | Ma, Shengtao | Zhang, Yanan | An, Taicheng
The bioaccessibility of organic pollutants is a key factor in human health risk assessments. We developed a novel in vitro method for determining the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons (PAHs) using an air-washing device containing simulated human lung fluid. The experimental parameters were optimized based on the deposition fractions (DFs) of PAHs in human lung fluids. The DFs were measured for PAHs based on the mass of compounds in the mainstream and exhaled cigarette smoke. The mass fractions of bioaccessible PAHs were measured by passing the mainstream cigarette smoke through the air-washing device, and they were calculated via a simple mass balance equation based on the PAHs in the fluid and mainstream cigarette smoke. The DFs of individual PAHs ranged from 20.5% to 78.1%, and the bioaccessible mass fractions varied between 45.5% and 99.8%. The octanol-water partition coefficients (KOW) significantly influenced both the DFs and bioaccessible mass fractions of PAHs, and the optimized in vitro method could be used to estimate the bioavailable atmospheric PAHs. This in vitro method can potentially be used to measure the mass fraction of bioaccessible atmospheric PAHs and to assess the health risk related to human exposure to airborne PAHs.
Mostrar más [+] Menos [-]Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6 Texto completo
2018
Ma, Zhao | Liu, Juan | Dick, Richard P. | Li, Hui | Shen, Di | Gao, Yanzheng | Waigi, Michael Gatheru | Ling, Wanting
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Loïs | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul-Pont, Ika | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie des Environnements Extrêmophiles (LM2E) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Marine Biological Laboratory (MBL) ; University of Chicago | LABOCEA Laboratoire [Plouzané, France] | Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA) | ANR-15-CE34-0006,Nanoplastics,Microplastiques, nanoplastiques dans l'environnement marin: caractérisation, impacts et évaluation des risques sanitaires.(2015)
International audience | Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frere, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-laure | Lambert, Christophe | Reveillaud, Julie | Paul-pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Mostrar más [+] Menos [-]Biofiltration of methane using hybrid mixtures of biochar, lava rock and compost Texto completo
2018
La, Helen | Hettiaratchi, J. Patrick A. | Achari, Gopal | Verbeke, Tobin J. | Dunfield, Peter F.
Using hybrid packing materials in biofiltration systems takes advantage of both the inorganic and organic properties offered by the medium including structural stability and a source of available nutrients, respectively. In this study, hybrid mixtures of compost with either lava rock or biochar in four different mixture ratios were compared against 100% compost in a methane biofilter with active aeration at two ports along the height of the biofilter. Biochar outperformed lava rock as a packing material by providing the added benefit of participating in sorption reactions with CH4. This study provides evidence that a 7:1 volumetric mixture of biochar and compost can successfully remove up to 877 g CH4/m3·d with empty-bed residence times of 82.8 min. Low-affinity methanotrophs were responsible for the CH4 removal in these systems (KM(app) ranging from 5.7 to 42.7 µM CH4). Sequencing of 16S rRNA gene amplicons indicated that Gammaproteobacteria methanotrophs, especially members of the genus Methylobacter, were responsible for most of the CH4 removal. However, as the compost medium was replaced with more inert medium, there was a decline in CH4 removal efficiency coinciding with an increased dominance of Alphaproteobacteria methanotrophs like Methylocystis and Methylocella. As a biologically-active material, compost served as the sole source of nutrients and inoculum for the biofilters which greatly simplified the operation of the system. Higher elimination capacities may be possible with higher compost content such as a 1:1 ratio of either biochar or lava rock, while maintaining the empty-bed residence time at 82.8 min.
Mostrar más [+] Menos [-]Microplastics increase impact of treated wastewater on freshwater microbial community Texto completo
2018
Eckert, Ester M. | Di Cesare, Andrea | Kettner, Marie Therese | Arias-Andres, Maria | Fontaneto, Diego | Grossart, Hans-Peter | Corno, Gianluca
Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (int1), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of int1 increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised.
Mostrar más [+] Menos [-]Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors Texto completo
2018
Zhang, Xiaolan | Wu, Xia | Lei, Bingli | Jing, Ye | Jiang, Zi'an | Zhang, Xinyu | Fang, Xiangming | Yu, Yingxin
Organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites [dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane], hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB), are widely detected in humans despite the considerable decline in environmental concentrations. To understand the placental transfer of OCPs and the possible maternal influence on them, we measured the concentrations of DDTs, HCHs, and HCB in 102 paired samples of maternal and cord sera, and placentas collected in Shanghai, China. The median concentrations of DDTs and HCHs were the highest in maternal sera (601, 188 ng g⁻¹ lipid), followed by umbilical cord sera (389, 131 ng g⁻¹ lipid), and placentas (65, 37 ng g⁻¹ lipid). 4,4′-DDE, β-HCH, and HCB were the predominant contaminants in the three matrices. The ubiquitous existence of OCPs, and the significant concentration relationships of DDTs, HCHs, and OCPs in the three matrices suggested placental transfer from mother to fetus. The lipid-based concentration ratios of 4,4′-DDE, β-HCH, and HCB in umbilical cord serum to those in maternal serum (F/M), and ratios of placenta to maternal serum (P/M) ranged from 0.66 to 1.01, and 0.12 to 0.25, respectively. Maternal variables affected the levels of fetal contamination. For primiparous women, significant correlations between maternal age and maternal HCHs, and between pre-pregnancy body mass index (BMI) and maternal HCHs were found. The negative effect of parity, and the positive effect of food consumption on maternal OCP concentrations were also observed, although there were no significant differences. The possible influence of parity on F/M and P/M of 4,4′-DDE suggested borderline significant differences between primiparous and multiparous women. Also, slight group differences were observed between elder and younger women, and between overweight and normal/underweight women. Parity seems to have a potential influence on transfer ratios of some OCP pollutants.
Mostrar más [+] Menos [-]Levels and risk assessment of hydrocarbons and organochlorines in aerosols from a North African coastal city (Bizerte, Tunisia) Texto completo
2018
Barhoumi, Badreddine | Castro-Jiménez, Javier | Guigue, Catherine | Goutx, Madeleine | Sempéré, Richard | Derouiche, Abdelkader | Achour, Amani | Touil, Soufiane | Driss, Mohamed Ridha | Tedetti, Marc
The aim of this study was to assess, for the first time, the concentrations, sources, dry deposition and human health risks of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in total suspended particle (TSP) samples collected in Bizerte city, Tunisia (North Africa), during one year (March 2015–January 2016). Concentrations of PAHs, AHs, PCBs and OCPs ranged 0.5–17.8 ng m−3, 6.7–126.5 ng m−3, 0.3–11 pg m−3 and 0.2–3.6 pg m−3, respectively, with higher levels of all contaminants measured in winter. A combined analysis revealed AHs originating from both biogenic and petrogenic sources, while diesel vehicle emissions were identified as dominant sources for PAHs. PCB potential sources included electronic, iron, cement, lubricant factories located within or outside Bizerte city. The dominant OCP congeners were p,p′-DDT and p,p′-DDE, reflecting a current or past use in agriculture. Health risk assessment showed that the lifetime excess cancer risk from exposure to airborne BaP was negligible in Bizerte, except in winter, where a potential risk to the local population may occur.
Mostrar más [+] Menos [-]