Refinar búsqueda
Resultados 301-310 de 4,938
Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants Texto completo
2019
Li, Huanxuan | Zhang, Jian | Yao, Yuze | Miao, Xiangrui | Chen, Jiale | Tang, Junhong
In this work, we report on the synthesis and characterization of nanoporous bimetallic metal-organic frameworks (FeCo-BDC). Effects of synthesis time and temperature on the structures, morphology, and catalytic performance of FeCo-BDC were investigated. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were used to reveal the morphological and textural characteristics. The crystal structure and chemical composition of FeCo-BDC were determined by means of X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements. Interestingly, FeCo-BDC grew into the same crystal structure with different morphology in the temperature of 110–150 °C with 12–48 h. The heterogeneous catalytic activity of FeCo-BDC was tested to activate peroxydisulfate (PDS) and peroxymonosulfate (PMS) for removal of methylene blue (MB). The results found that FeCo-BDC synthesized at 150 °C with 24 h exhibited the best catalytic performance for PMS and obtained 100% of MB removal within 15 min. The abundant unsaturated metal active sites of Fe(II) and Co(II) in the skeleton of FeCo-BDC made a great contribution to the generation of sulfate (▪) and hydroxyl radicals (OH), which resulted in the excellent performance for MB degradation.
Mostrar más [+] Menos [-]Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review Texto completo
2019
Liu, Hao | Ma, Shengtao | Zhang, Xiaolan | Yu, Yingxin
Thermal desorption (TD) is a universal solvent-free pre-concentration technique. It is often used to pre-concentrate semi-volatile and volatile organic compounds in various sample types. Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants from incomplete combustion of organic matter and fossil fuel, which have carcinogenic effects on human health. Conventional methods for determining PAHs, represented by solvent extraction, are gradually being replaced by solvent-free methods, typically the TD technique, because of TD's many advantages, including time savings and environmentally friendly treatment. This work presents an extensive review of the universal methods used to determine PAHs in the atmosphere based on the TD technique. The methods currently used for collection and detection of both gas- and particle-phase PAHs in the air are critically reviewed. In addition, the operating parameters of the TD unit are summarized and discussed. The design shortcomings of existing studies and the problems that researchers should address are presented, and promising alternatives are suggested. This paper also discusses important parameters, such as reproducibility and limit of detection, that form a crucial part of quality assurance. Finally, the limitations and the future prospects of the TD technique for use in airborne PAH analyses are addressed. This is the first review of the latest developments of the TD technique for analysis of PAHs and their derivatives in the atmosphere.
Mostrar más [+] Menos [-]The immune responses of the Chinese rare minnow (Gobiocypris rarus) exposed to environmentally relevant concentrations of cypermethrin and subsequently infected by the bacteria Pseudomonas fluorescens Texto completo
2019
Zhang, Le | Zhao, Xu | Yan, Saihong | Zha, Jinmiao | Ma, Xufa
In the present study, to assess the immunotoxicity of cypermethrin (CYP) in fish, Chinese rare minnows (Gobiocypris rarus) were exposed to environmentally relevant concentrations (0.15, 0.5, and 1.5 μg/L) of CYP for 28 d and subjected to pathogen challenge trials for 2 d. After 28 d of CYP exposure, the levels of Immunoglobulin M (IgM), Alkaline phosphatase (ALP), and C-reactive protein (CRP) were significantly decreased (p < 0.05) after treatment with 1.5 μg/L CYP. Moreover, an induction of inflammatory cytokine transcripts (tnfa, il-6, il-8, and il-12) was observed (p < 0.05) after treatment with 1.5 μg/L CYP. After challenge with Pseudomonas fluorescens (P. fluorescens), plasma lysozyme (LYS) activity at 24 and 48 hours post-injection (hpi) was significantly decreased in the 0.5 and 1.5 μg/L CYP treatment groups (p < 0.05). Moreover, liver Complement component 3 (C3) and CRP contents at 24 hpi were significantly decreased in the 1.5 μg/L CYP treatment group (p < 0.05), whereas significant decreases in liver C3 and IgM contents were observed at 48 hpi (p < 0.05). Inhibition of expression of Toll-like receptor-nuclear factor kappa B (TLR-NF-kB) signaling pathway-related genes was observed in the CYP treatment groups and resulted in significant down-regulation of inflammatory cytokines (il-1β and il-12) in the 1.5 μg/L CYP treatment group at 48 hpi (p < 0.05). Interestingly, the mortality in the 0.5 and 1.5 μg/L CYP treatments was significantly increased at 48 hpi (p < 0.05). These results indicated that environmentally relevant concentrations of CYP suppressed the Chinese rare minnow immune system and reduced immune defense against bacterial infection, thereby causing subsequent mortality. Meanwhile, our results demonstrated that a subsequent host resistance challenge is an effective method for determining the immunotoxicity of chemicals (e.g., CYP).
Mostrar más [+] Menos [-]Characterization of the Fundulus heteroclitus embryo transcriptional response and development of a gene expression-based fingerprint of exposure for the alternative flame retardant, TBPH (bis (2-ethylhexyl)-tetrabromophthalate) Texto completo
2019
Huang, Weichun | Bencic, David C. | Flick, Robert L. | Nacci, Diane E. | Clark, Bryan W. | Burkhard, Lawrence | Lahren, Tylor | Biales, Adam D.
Although alternative Flame Retardant (FR) chemicals are expected to be safer than the legacy FRs they replace, their risks to human health and the environment are often poorly characterized. This study used a small volume, fish embryo system to reveal potential mechanisms of action and diagnostic exposure patterns for TBPH (bis (2-ethylhexyl)-tetrabromophthalate), a component of several widely-used commercial products. Two different concentration of TBPH were applied to sensitive early life stages of an ecologically important test species, Fundulus heteroclitus (Atlantic killifish), with a well-annotated genome. Exposed fish embryos were sampled for transcriptomics or chemical analysis of parent compound and primary metabolite or observed for development and survival through larval stage. Global transcript profiling using RNA-seq was conducted (n = 16 per treatment) to provide a non-targeted and statistically robust approach to characterize TBPH gene expression patterns. Transcriptomic analysis revealed a dose-response in the expression of genes associated with a surprisingly limited number of biological pathways, but included the aryl hydrocarbon receptor signal transduction pathway, which is known to respond to several toxicologically-important chemical classes. A transcriptional fingerprint using Random Forests was developed that was able to perfectly discriminate exposed vs. non-exposed individuals in test sets. These results suggest that TBPH has a relatively low potential for developmental toxicity (at least in fishes), despite concerns related to its structural similarities to endocrine disrupting chemicals and that the early life stage Fundulus system may provide a convenient test system for exposure characterization. More broadly, this study advances the usefulness of a biological testing and analysis system utilizing non-targeted transcriptomics profiling and early developmental endpoints that complements current screening methods to characterize chemicals of ecological and human health concern.
Mostrar más [+] Menos [-]Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae Texto completo
2019
Yang, Li | Wang, Wen-Xiong
Cu nanoparticles (CuNPs) have been widely used in numerous products, and may become a potential threat to marine organisms, but their behavior in the marine environments and potential toxicity to marine organisms remain little known. In the present study, we investigated the behavior of CuNPs in seawater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4) in barnacle larvae (Balanus amphitrite), a dominant fouling invertebrate in marine environment. CuNPs tended to aggregate in natural seawater and released Cu ion rapidly into seawater. The aggregation and release were especially higher at a lower concentration of CuNPs, e.g., 94–96% of CuNPs were released as Cu ions at 20 μg/L after 24 h. The larger size of CuNPs (40 nm) tended to display a higher solubility than the 20 nm CuNPs did. Humic acids enhanced the aggregation and inhibited the dissolution of CuNPs, and had a protective effect on the survival of nauplii II at higher Cu concentrations (100–200 μg/L). Comparison of the lethal concentrations showed that CuNPs were generally less toxic to the two stages of barnacle larvae (nauplii II and VI) than the Cu ions. The calculated 48-h LC50 values for nauplii II were 189.5 μg/L, 123.2 μg/L, and 89.8 μg/L for 20 nm CuNPs, 40 nm CuNPs, and CuSO4, respectively. However, the lethal concentrations of Cu bioaccumulation in the barnacle larvae were comparable between CuNPs and Cu ions when expressed by the actual tissue Cu bioaccumulation. Barnacle larval settlement decreased with an increase of Cu concentrations of both CuNPs and CuSO4, and was significantly inhibited at 100 μg/L CuSO4 and 150 μg/L CuNPs. Our results indicated that the toxicity of CuNPs could not be solely explained by the released Cu ions, and both CuNPs and the released Cu ion contributed to their toxicity and bioaccumulation in barnacle larvae.
Mostrar más [+] Menos [-]17β-estradiol at low concentrations attenuates the efficacy of tamoxifen in breast cancer therapy Texto completo
2019
Xu, Zhixiang | Zheng, Xianyao | Xia, Xueshan | Wang, Xiaoxia | Luo, Nao | Huang, Bin | Pan, Xuejun
Tamoxifen has been applied widely in the treatment of estrogen receptor (ER)-positive breast cancer. The impact of low concentrations of 17β-estradiol (E2) (a pervasive environmental pollutant) on its effectiveness was studied in vitro using an MCF-7 cell line. Cell proliferation, migration, invasion, and apoptosis were studied along with cell cycle progression, reactive oxygen species generation and mitochondrial membrane potentials repression. The signaling pathways involved were identified. Typical concentrations of E2 in the environment (10⁻¹⁰ to 10⁻⁸ M) were observed to promote cell growth and protect MCF-7 cells from tamoxifen's cytotoxicity. Cell migration, invasion, cell cycle progression and apoptosis all involved in reducing tamoxifen's cytotoxicity. E2 at environmental concentrations induced PI3K/Akt and MAPK/ERK signal transduction through the estrogen receptor pathways to affect cell proliferation. Taken together, the results explain how E2 in the environment may attenuate the efficacy of tamoxifen in ER-positive breast cancer therapy. They provide considerable support for E2's adverse effects on human health and cancer management.
Mostrar más [+] Menos [-]Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water Texto completo
2019
Wu, Pei-Hsun | Cheng, Yi-Ching | Chen, Haon-Yao | Chueh, Ti-wen | Chen, Hui-Chen | Huang, Li-Hsun | Wu, Zhong-Xian | Hsieh, Tsung-Min | Chang, Chao-Chin | Yang, Ping-Yi | Lin, Cheng-Fang | Yu, Chang-Ping
Control of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated. The results showed that the EBR system achieved higher than 81%, 35%, 12% and 46% of reduction in chlorophyll a (Chl a), total COD (TCOD), dissolved organic carbon (DOC) and total nitrogen (TN), respectively under varied influent concentrations. The treatment performance was not significantly influenced by HRT and presence/absence of physical pretreatment and the effluent water quality was stable; however, removal efficiencies and removal rates of Chl a, TCOD and DOC showed strong correlation with their influent concentrations. Excitation–emission matrix (EEM) fluorescence spectroscopy identified fulvic-like and humic-like substances as the two major components of dissolved organic matter (DOM) in the reservoir, and decreased intensity of the major peaks in effluent EEM fluorescence spectra suggested the effective removal of DOM without production of additional amount of soluble microbial products in the EBR. Through the treatment by EBR, about 10% of reduction of total trihalomethane formation potential for the effluent could also be achieved. Therefore, the overall results of this study demonstrate that EBR can be a potential pretreatment process for drinking water treatment plants receiving eutrophic source water.
Mostrar más [+] Menos [-]Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media Texto completo
2019
Zhang, Miaoyue | Bradford, Scott A. | Šimůnek, Jirka | Vereecken, H. (Harry) | Klumpp, Erwin
Multi-walled carbon nanotubes (MWCNTs) are increasing used in commercial applications and may be released into the environment with anionic surfactants, such as sodium dodecylbenzenesulfonate (SDBS), in sewer discharge. Little research has examined the transport, retention, and remobilization of MWCNTs in the presence or absence of SDBS in porous media with controlled chemical heterogeneity, and batch and column scale studies were therefore undertaken to address this gap in knowledge. The adsorption isotherms of SDBS on quartz sand (QS), goethite coated quartz sand (GQS), and MWCNTs were determined. Adsorption of SDBS (MWCNTs » GQS > QS) decreased zeta potentials for these materials, and produced a charge reversal for goethite. Transport of MWCNTs (5 mg L⁻¹) dramatically decreased with an increase in the fraction of GQS from 0 to 0.1 in the absence of SDBS. Conversely, co-injection of SDBS (10 and 50 mg L⁻¹) and MWCNTs radically increased the transport of MWCNTs when the GQS fraction was 0, 0.1, and 0.3, especially at a higher SDBS concentration, and altered the shape of retention profile. Mathematical modeling revealed that competitive blocking was not the dominant mechanism for the SDBS enhancement of MWCNT transport. Rather, SDBS sorption increased MWCNT transport by increasing electrostatic and/or steric interactions, or creating reversible interactions on rough surfaces. Sequential injection of pulses of MWCNTs and SDBS in sand (0.1 GQS fraction) indicated that SDBS could mobilize some of retained MWCNTs from the top to deeper sand layers, but only a small amount of released MWCNTs were recovered in the effluent. SDBS therefore had a much smaller influence on MWCNT transport in sequential injection than in co-injection, presumably because of a greater energy barrier to MWCNT release than retention. This research sheds novel insight on the roles of competitive blocking, chemical heterogeneity and nanoscale roughness, and injection sequence on MWCNT retention and release.
Mostrar más [+] Menos [-]Cerium and erbium effects on Daphnia magna generations: A multiple endpoints approach Texto completo
2019
Galdiero, E. | Carotenuto, R. | Siciliano, A. | Libralato, G. | Race, M. | Lofrano, G. | Fabbricino, M. | Guida, M.
Cerium (Ce, CeCl₃) and Erbium (Er, ErCl₃) are increasingly used in many electronic devices facilitating the alteration of their biogeochemical cycles (e.g. e-waste). Previous surveys stated that their environmental concentrations due to natural or anthropogenic events can reach up to 161 μg/L in ore mine effluent for Ce with a mean water concentration of 0.79 μg/L, and 11.9 μg/L for Er in ore mine effluents with a mean water concentration of 0.004 μg/L. Their potential effects onto aquatic organisms are still relatively unexplored. In this study, long-term multigenerational effects on Daphnia magna were assessed using various exposure times (3, 7, 14, and 21 days) in three generations (F0, F1 and F2). Each generation was exposed to environmental concentrations of Ce and Er (0.54 and 0.43 μg/L, respectively – mean values) and effects included organisms' size, parental reproduction, and survival, determination of reactive oxygen species (ROS), enzymatic activity (superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)), gene expression of ATP-binding cassette (ABC) transporter, and uptake.Results evidenced that chronic multi-generational exposure of daphnids to Ce and Er reduced survival, growth and reproduction, decreasing ROS, SOD and CAT from F0 to F2. Ce reduced the number of generated offsprings after each generation, while Er delayed the time of offsprings emergence, but not their number. ROS, SOD, CAT and GST evidenced that Er is slightly more toxic than Ce. Up- and downregulation of genes was limited, but Ce and Er activated the ABC transporters. Uptake of Ce and Er decreased through exposure time and generations.
Mostrar más [+] Menos [-]Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater Texto completo
2019
Huang, Haiming | Li, Bing | Li, Jing | Zhang, Peng | Yu, Wei | Zhao, Ning | Guo, Guojun | Young, Brent
Struvite recovered from swine wastewater can be used as a good slow release fertilizer. Nevertheless, the presence of heavy metals would be easily precipitated with struvite and increase the ecological risk for its agricultural use. This paper investigated the possibility of using process variables for heavy metal (Cu2+, Zn2+ and Cr3+) minimization during struvite crystallization in swine wastewater. The heavy metal content, effect ratios (ER) of the citric acid concentration under varying conditions were tested and their SEM, EDS and XRD patterns were compared for morphology analysis. The results show that an increase in pH decreased the content of Cu, Zn and Cr in recovered precipitates. Heavy metal content in the precipitates increased markedly with their initial concentrations in the solution. The effect ratio calculation indicates that Cr has the strongest co-precipitation potential, followed by Zn and Cu. An increase in citric acid concentration reduced the heavy metal removal efficiency (14.3, 27.7 and 28.1% for Cu, Zn and Cr, respectively) but did not decrease their content in struvite precipitates. What is more, increase of total ammonia nitrogen (TAN) to soluble phosphate molar ratio significantly decreased Cu, Zn removal efficiency (52.2 and 50% respectively), while Mg:PO4P molar ratio had much less effect.
Mostrar más [+] Menos [-]