Refinar búsqueda
Resultados 301-310 de 7,280
A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops
2022
Cao, Hong Wei | Zhao, Ya Ning | Liu, Xue Song | Rono, Justice Kipkorir | Yang, Zhi Min
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76–34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36–35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.
Mostrar más [+] Menos [-]Multi-spectroscopic investigation of the molecular weight distribution and copper binding ability of dissolved organic matter in Dongping Lake, China
2022
Fan, Tuantuan | Yao, Xin | Ren, Haoyu | Ma, Feiyang | Liu, Li | Huo, Xiaojia | Lin, Tong | Zhu, Haiyan | Zhang, Yinghao
The properties and metal-binding abilities of dissolved organic matter (DOM) rely on its molecular weight (MW) structure. In this study, the spatial differences of DOM in compositions, MW structures, and binding mechanisms with copper (Cu²⁺) in Dongping Lake were investigated by applying excitation-emission matrix combining parallel factor analysis (EEM-PARAFAC), synchronous fluorescence (SF) spectra, two-dimensional correlation spectra (2D-COS), and Fourier transform infrared (FTIR) spectra. The EDOM for the entrance of the Dawen River and PDOM for the macrophyte-dominated region were divided from DOM of Dongping Lake based on hierarchical clustering analysis (HCA) and principal component analysis (PCA) and were size-fractioned into MW < 500 kDa and <100 kDa fractions. According to EEM-PARAFAC, Dongping Lake was dominated by tryptophan-like substances with MW < 500 kDa. The concentration of PDOM was higher than that of EDOM (p < 0.05). 2D-COS showed that protein-like components preceded humic-like components binding to Cu²⁺ regardless of sample type (215 nm > 285 nm > 310–360 nm). The Cu²⁺ binding capacity of DOM exhibited specific differences in space, components, and molecular weights. The humic-like component 1 (C1) and tryptophan-like component 4 (C4) of PDOM showed stronger binding abilities than those of EDOM. Endogenous tryptophan-like component 4 (C4) had a higher binding affinity for Cu²⁺ than humic-like components (logKₐ: C4 > C1 > C2) in PDOM irrespective of MW. Humic-like components with MW < 500 kDa displayed higher binding potentials for Cu²⁺. FTIR spectra showed that the main participants of DOM-Cu complexation included aromatic hydrocarbons, aliphatic groups, amide Ⅰ bands, and carboxyl functional groups. This study provides spatial-scale insights into the molecular weight structure of DOM in influencing the behavior, fate, and bioavailability of heavy metals in lakes.
Mostrar más [+] Menos [-]Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture
2022
Ali, Sajad | Tyagi, Anshika | Mushtaq, Muntazir | Al-Mahmoudi, Henda | Bae, Hanhong
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of ‘omics’ which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Mostrar más [+] Menos [-]Legacy halogenated organic contaminants in urban-influenced waters using passive polyethylene samplers: Emerging evidence of anthropogenic land-use-based sources and ecological risks
2022
Zhao, Wenlu | Cai, Minggang | Adelman, David | Khairy, Mohammed | Lin, Yan | Li, Zhiheng | Liu, Huijun | Lohmann, Rainer
Legacy halogenated organic pollutants, including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in the environment and continue to pose potential (eco-)toxicological threats because of their ongoing releases from land-based sources. This study investigated the spatial trends of freely dissolved PCBs and OCPs by polyethylene passive samplers, and provided evidence of their land-use-based sources and ecological risk in an urbanized estuary area of Narragansett Bay. Dissolved Σ₂₉PCB concentrations ranged from 0.01 to 1.37 ng L⁻¹, and exhibited higher concentrations in the upper, more urban/built-up watershed, and in north coastal areas. Major inputs of PCBs were urban stormwater or treated wastewater that might carry past releases of Aroclors, pigment manufacturing byproducts, and volatilization-associated PCBs from ageing buildings from the Narragansett watershed to the bay. The dioxin toxicity equivalent values of Σ₅PCBs were 8.6E-03 pg L⁻¹ in water. Dissolved OCP concentrations had similar spatial trends to PCBs and were dominated by DDTs (average 230 pg L⁻¹), followed by chlordanes (average 230 pg L⁻¹), and HCB (average 22 pg L⁻¹). Secondary sources of past usage and historic contamination were expected to re-enter the surface water via atmospheric transport and deposition. The risk quotients of DDE, DDD, DDT and α-Endosulfane showed medium to high ecological risks in the northern area, while chlordane, HCB, oxychlordane, and heptachlor epoxide showed low to negligible risks in all zones. This study presented new insights into the presence, sources and transport of legacy halogenated organic contaminants in an urban estuary's watershed by combining passive samplers and geographic information system (GIS) technology. The approach is promising and could be extended to get better understand of terrestrial pollutant mobilization into estuaries affected by anthropogenic activities.
Mostrar más [+] Menos [-]Phase transformation of silica particles in coal and biomass combustion processes
2022
Yang, Xuezhi | Lu, Dawei | Zhu, Bao | Sun, Zhendong | Li, Gang | Li, Jie | Liu, Qian | Jiang, Guibin
Inhalation of respirable silica particles can cause serious lung diseases (e.g., silicosis and lung cancer), and the toxicity of respirable silica is highly dependent on its crystal form. Common combustion processes such as coal and biomass burning can provide high temperature environments that may alter the crystal forms of silica and thus affect its toxic effects. Although crystalline silica (i.e., quartz, tridymite, and cristobalite) were widely found at different temperatures during the burning processes, the sources and crystal transformation pathways of silica in the burning processes are still not well understood. Here, we investigate the crystal transformation of silica in the coal and biomass combustion processes and clarify the detailed transformation pathways of silica for the first time. Specifically, in coal burning process, amorphous silica can transform into quartz and cristobalite starting at 1100 °C, and quartz transforms into cristobalite starting at 1200 °C; in biomass burning process, amorphous silica can transform into cristobalite starting at 800 °C, and cristobalite transforms into tridymite starting at 1000 °C. These transformation temperatures are significantly lower than those predicted by the classic theory due to possibly the catalysis of coexisting metal elements (e.g., aluminum, iron, and potassium). Our results not only enable a deeper understanding on the combustion-induced crystal transformation of silica, but also contribute to the mitigation of population exposure to respirable silica.
Mostrar más [+] Menos [-]Outdoor air quality and human health: An overview of reviews of observational studies
2022
Markozannes, Georgios | Pantavou, Katerina | Rizos, Evangelos C. | Sindosi, Ourania Α | Tagkas, Christos | Seyfried, Maike | Saldanha, Ian J. | Hatzianastassiou, Nikos | Nikolopoulos, Georgios K. | Ntzani, Evangelia
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO₂, O₃, PM₁₀, PM₂.₅, and SO₂ and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM₂.₅, PM₁₀, NO₂, and SO₂ concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM₂.₅, PM₁₀, O₃, NO₂, and SO₂ concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Mostrar más [+] Menos [-]Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties
2022
Huang, Xizhi | Leung, Jonathan Y.S. | Hu, Menghong | Xu, Elvis Genbo | Wang, Youji
Ocean acidification may increase the risk of disease outbreaks that would challenge the future persistence of marine organisms if their immune system and capacity to produce vital structures for survival (e.g., byssus threads produced by bivalves) are compromised by acidified seawater. These potential adverse effects may be exacerbated by microplastic pollution, which is forecast to co-occur with ocean acidification in the future. Thus, we evaluated the impact of ocean acidification and microplastics on the health of a mussel species (Mytilus coruscus) by assessing its physiological performance, immunity and byssus properties. We found that ocean acidification and microplastics not only reduced hemocyte concentration and viability due to elevated oxidative stress, but also undermined phagocytic activity of hemocytes due to lowered energy budget of mussels, which was in turn caused by the reduced feeding performance and energy assimilation. Byssus quality (strength and extensibility) and production were also reduced by ocean acidification and microplastics. To increase the chance of survival with these stressors, the mussels prioritized the synthesis of some byssus proteins (Mfp-4 and Mfp-5) to help maintain adhesion to substrata. Nevertheless, our findings suggest that co-occurrence of ocean acidification and microplastic pollution would increase the susceptibility of bivalves to infectious diseases and dislodgement risk, thereby threatening their survival and undermining their ecological contributions to the community.
Mostrar más [+] Menos [-]Exposure of construction workers to hazardous emissions in highway rehabilitation projects measured with low-cost sensors
2022
Blaauw, Sheldon A. | Maina, James W. | O'Connell, Johan
Construction workers on highway rehabilitation projects can be exposed to a combination of traffic- and construction-related emissions. To assess the personal exposure a worker experiences, a portable battery-operated Air Quality Device (AQD) was utilised to measure emissions during normal construction operations of a major road rehabilitation project. Emissions measured were nitrogen dioxide (NO₂), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM₁₀, PM₂.₅, and PM₁). The objective of the paper is to document the hazardous emissions that construction workers may be exposed to and allow for a basis of informed decision making to mitigate the risks of a road construction project. Most critically, this article is designed to raise awareness of the potential impact to a worker's wellbeing as well as highlight the need for further research. Through statistical analysis, asphalt paving was identified as the most hazardous activity in terms of exposure relative to other activities. This activity was further assessed using discrete-time Markov chain Monte Carlo simulations with results indicating a high probability that workers may be exposed to greater hazardous emission concentrations than measured. Limiting the distance to the source of emissions, large-scale use of warm-mix asphalt and reducing the idling times of construction vehicles were identified as practical mitigation measures to reduce exposure and aid in achieving zero-harm objectives. Finally, it is found that males are more susceptible to long-term implications of hazardous emission inhalation and should be more aware if the scenarios they might work in expose them to this.
Mostrar más [+] Menos [-]Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis
2022
Vendl, Catharina | Pottier, Patrice | Taylor, Matthew D. | Bräunig, Jennifer | Gibson, Matthew J. | Hesselson, Daniel | Neely, G Gregory | Lagisz, Malgorzata | Nakagawa, Shinichi
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I² = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
Mostrar más [+] Menos [-]Marine sponges as coastal bioindicators of rare earth elements bioaccumulation in the French Mediterranean Sea
2022
Orani, Anna Maria | Vassileva, Emilia | Thomas, Olivier P.
In recent years, the widespread use of rare earth elements (REEs) has raised the issue of their harmful effects on the aquatic environment. REEs are now considered as contaminants of emerging concern. Despite the increasing interest of REEs in modern industry, there is still a lack of knowledge on their potential impact on the environment and especially in the marine environment. In this context, the need for monitoring tools to assess REEs pollution status in marine ecosystems is considered as the first step towards their risk assessment. Similar to mussels, filter-feeder sponges have emerged as a key bio-monitor species for marine chemical pollution. Their key position at a low level of the trophic chain makes them suitable model organisms for the study of REEs potential transfer through the aquatic food web. We therefore undertook a comparative study on seven marine sponge species, assessing their capability to bioaccumulate REEs and to potentially transfer these contaminants to higher positions in the trophic chain. A spike experiment under controlled conditions was carried out and the intra- and inter-species variability of REEs was monitored in the sponge bodies by ICP-MS. Concentrations were found to be up to 170 times higher than the corresponding control specimens. The tubular species Aplysina cavernicola showed the highest concentrations among the studied species. This study shows, for the first time, the potential of marine sponges as bio-monitor of REEs as well as their possible application in the bioremediation of polluted sites.
Mostrar más [+] Menos [-]